Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations
Abstract
:1. Introduction
2. Method
3. Results and Analysis
3.1. The General Characteristics of INP Concentration
3.2. The Vertical Distribution of INPs Concentration
3.3. Meteorological Conditions and Aerosol Distribution
3.4. Origin of the Air Masses
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cziczo, D.J.; Froyd, K.D.; Hoose, C.; Jensen, E.J.; Diao, M.; Zondlo, M.A.; Smith, J.B.; Twohy, C.H.; Murphy, D.M. Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation. Science 2013, 340, 1320–1324. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Gu, Y.; Liou, K.-N.; Jiang, J.H.; Fan, J.; Liu, X.; Huang, L.; Yung, Y.L. Ice Nucleation by Aerosols from Anthropogenic Pollution. Nat. Geosci. 2019, 12, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Temprado, J.; Miltenberger, A.K.; Furtado, K.; Grosvenor, D.P.; Shipway, B.J.; Hill, A.A.; Wilkinson, J.M.; Field, P.R.; Murray, B.J.; Carslaw, K.S. Strong Control of Southern Ocean Cloud Reflectivity by Ice-Nucleating Particles. Proc. Natl. Acad. Sci. USA 2018, 115, 2687–2692. [Google Scholar] [CrossRef] [PubMed]
- Bruintjes, R.T. A Review of Cloud Seeding Experiments to Enhance Precipitation and Some New Prospects. Bull. Am. Meteorol. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, G.; Jin, D. A Numerical Comparison Study of Cloud Seeding by Silver Iodide and Liquid Carbon Dioxide. Atmos. Res. 2006, 79, 183–226. [Google Scholar] [CrossRef]
- Bigg, E.K. Natural Atmospheric Ice Nuclei. Sci. Prog. 1961, 49, 458. [Google Scholar]
- Paul, S.K.; Sharma, S.K.; Selvam, A.M.; Murty, A.S.R. The title of the cited article. J. Rech. Atmos. 1985, 19, 323–327. [Google Scholar]
- Rogers, D.C.; DeMott, P.J.; Kreidenweis, S.M.; Chen, Y. A Continuous-Flow Diffusion Chamber for Airborne Measurements of Ice Nuclei. J. Atmos. Oceanic Technol. 2001, 18, 725–741. [Google Scholar] [CrossRef]
- Twohy, C.H.; McMeeking, G.R.; DeMott, P.J.; McCluskey, C.S.; Hill, T.C.J.; Burrows, S.M.; Kulkarni, G.R.; Tanarhte, M.; Kafle, D.N.; Toohey, D.W. Abundance of Fluorescent Biological Aerosol Particles at Temperaturesconducive to the Formation of Mixed-Phase and Cirrus Clouds. Atmos. Chem. Phys. 2016, 16, 8205–8225. [Google Scholar] [CrossRef]
- Prenni, A.J.; DeMott, P.J.; Twohy, C.; Poellot, M.R.; Kreidenweis, S.M.; Rogers, D.C.; Brooks, S.D.; Richardson, M.S.; Heymsfield, A.J. Examinations of Ice Formation Processes in Florida Cumuli Using Ice Nuclei Measurements of Anvil Ice Crystal Particle Residues: Examinations of ice formation processes. J. Geophys. Res. 2007, 112, D10221. [Google Scholar] [CrossRef]
- Anderson, T.L.; Charlson, R.J.; Winker, D.M.; Ogren, J.A.; Holmén, K. Mesoscale Variations of Tropospheric Aerosols*. J. Atmos. Sci. 2003, 60, 119–136. [Google Scholar] [CrossRef]
- Patade, S.; Nagare, B.; Wagh, S.; Maheskumar, R.S.; Prabha, T.V.; Pradeep Kumar, P. Deposition Ice Nuclei Observations over the Indian Region during CAIPEEX. Atmos. Res. 2014, 149, 300–314. [Google Scholar] [CrossRef]
- Conen, F.; Rodríguez, S.; Hülin, C.; Henne, S.; Herrmann, E.; Bukowiecki, N.; Alewell, C. Atmospheric Ice Nuclei at the High-Altitude Observatory Jungfraujoch, Switzerland. Tellus Chem. Phys. Meteorol. 2015, 67, 25014. [Google Scholar] [CrossRef]
- Boose, Y.; Sierau, B.; Garcí, M.I.; Rodríguez, S.; Alastuey, A.; Linke, C.; Schnaiter, M.; Kupiszewski, P.; Kanji, Z.A.; Lohmann, U. Ice nucleating particles in the Saharan Air Layer. Atmos. Chem. Phys. 2016, 16, 9067–9087. [Google Scholar] [CrossRef]
- Brunner, C.; Brem, B.T.; Collaud Coen, M.; Conen, F.; Hervo, M.; Henne, S.; Steinbacher, M.; Gysel-Beer, M.; Kanji, Z.A. The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.). Atmosphere 2021, 21, 18029–18053. [Google Scholar] [CrossRef]
- Hartmann, M.; Adachi, K.; Eppers, O.; Haas, C.; Herber, A.; Holzinger, R.; Hünerbein, A.; Jäkel, E.; Jentzsch, C.; Pinxteren, M.; et al. Wintertime Airborne Measurements of Ice Nucleating Particles in the High Arctic: A Hint to a Marine, Biogenic Source for Ice Nucleating Particles. Geophys. Res. Lett. 2020, 47, e2020GL087770. [Google Scholar] [CrossRef]
- Sanchez-Marroquin, A.; West, J.S.; Burke, I.T.; McQuaid, J.B.; Murray, B.J. Mineral and Biological Ice-Nucleating Particles above the South East of the British Isles. Environ. Sci. Atmos. 2021, 1, 176–191. [Google Scholar] [CrossRef] [PubMed]
- Ardon-Dryer, K.; Levin, Z.; Lawson, R.P. Characteristics of Immersion Freezing Nuclei at the South Pole Station in Antarctica. Atmos. Chem. Phys. 2011, 11, 4015–4024. [Google Scholar] [CrossRef]
- He, C.; Yin, Y.; Wang, W.; Chen, K.; Mai, R.; Jiang, H.; Zhang, X.; Fang, C. Aircraft Observations of Ice Nucleating Particles over the Northern China Plain: Two Cases Studies. Atmos. Res. 2021, 248, 105242. [Google Scholar] [CrossRef]
- Chen, K.; Yin, Y.; Liu, S.; Liu, C.; Wang, H.; He, C.; Jiang, H.; Chen, J. Concentration and Variability of Deposition-Mode Ice Nucleating Particles from Mt. Tai of China in the Early Summer. Atmos. Res. 2021, 253, 105426. [Google Scholar] [CrossRef]
- Lacher, L.; Steinbacher, M.; Bukowiecki, N.; Herrmann, E.; Zipori, A.; Kanji, Z. Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere 2018, 9, 363. [Google Scholar] [CrossRef]
- Lacher, L.; DeMott, P.J.; Levin, E.J.T.; Suski, K.J.; Boose, Y.; Zipori, A.; Herrmann, E.; Bukowiecki, N.; Steinbacher, M.; Gute, E.; et al. Background Free-Tropospheric Ice Nucleating Particle Concentrations at Mixed-Phase Cloud Conditions. J. Geophys. Res. Atmos. 2018, 123, 10506–10525. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Cui, K.; Chen, S.; Zhao, Y.; Chao, H.-R.; Chang-Chien, G.-P. Characterization of the Air Quality Index for Urumqi and Turfan Cities, China. Aerosol Air Qual. Res. 2019, 19, 282–306. [Google Scholar] [CrossRef]
- Klein, H.; Haunold, W.; Bundke, U.; Nillius, B.; Wetter, T.; Schallenberg, S.; Bingemer, H. A new method for sampling of atmospheric ice nuclei with subsequent analysis in a static diffusion chamber. Atmos. Res. 2010, 96, 218–224. [Google Scholar] [CrossRef]
- Schrod, J.; Danielczok, A.; Weber, D.; Ebert, M.; Thomson, E.S.; Bingemer, H.G. Re-evaluating the Frankfurt isothermal static diffusion chamber for ice nucleation. Atmos. Meas. Tech. 2016, 9, 386–398. [Google Scholar] [CrossRef]
- Su, H.; Yin, Y.; Lu, C.; Jiang, H.; Yang, L. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan area. Chin. J. Atmos. Sci. 2014, 38, 386–398. [Google Scholar]
- Tang, M.; Chen, J.; Wu, Z. Ice nucleating particles in the troposphere: Progresses, challenges and opportunities. Atmos. Environ. 2018, 192, 206–208. [Google Scholar] [CrossRef]
- Marcolli, C. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities. Atmos. Chem. Phys. 2014, 14, 2071–2104. [Google Scholar] [CrossRef]
- Wex, H.; DeMott, P.J.; Tobo, Y.; Hartmann, S.; Rösch, M.; Clauss, T.; Tomsche, L.; Niedermeier, D.; Stratmann, F. Kaolinite particles as ice nuclei: Learning from the use of different kaolinite samples and different coatings. Atmos. Chem. Phys. 2014, 14, 5529–5546. [Google Scholar] [CrossRef]
- Fletcher, N.H. The Physics of Rainclouds; Cambridge University Press: Cambridge, UK, 2007; p. 408. [Google Scholar]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting Global Atmospheric Ice Nuclei Distributions and Their Impacts on Climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef]
- Field, P.R.; Möhler, O.; Connolly, P.; Krämer, M.; Cotton, R.; Heymsfield, A.J.; Saathoff, H.; Schnaiter, M. Some ice nucleation characteristics of Asian and Saharan desert dust. Atmos. Chem. Phys. 2006, 6, 2991–3006. [Google Scholar] [CrossRef]
- Schrod, J.; Weber, D.; Drücke, J.; Keleshis, C.; Pikridas, M.; Ebert, M.; Cvetković, B.; Nickovic, S.; Marinou, E.; Baars, H.; et al. Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems Atmos. Chem. Phys. 2017, 17, 4817–4835. [Google Scholar]
- Price, H.C.; Baustian, K.J.; McQuaid, J.B.; Blyth, A.; Bower, K.N.; Choularton, T.; Cotton, R.J.; Cui, Z.; Field, P.R.; Gallagher, M.; et al. Atmospheric Ice-Nucleating Particles in the Dusty Tropical Atlantic. J. Geophys. Res. Atmos. 2018, 17, 2175–2193. [Google Scholar] [CrossRef]
- Porter, G.C.E.; Adams, M.P.; Brooks, I.M.; Ickes, L.; Karlsson, L.; Leck, C.; Salter, M.E.; Schmale, J.; Siegel, K.; Sikora, S.N.F.; et al. Highly Active Ice-Nucleating Particles at the Summer North Pole. JGR Atmos. 2022, 127, e2021JD036059. [Google Scholar] [CrossRef]
- Paramonov, M.; David, R.O.; Kretzschmar, R.; Kanji, Z.A. A laboratory investigation of the ice nucleation efficiency of three types of mineral and soil dust. Atmos. Chem. Phys. 2018, 18, 16515–16536. [Google Scholar] [CrossRef]
- López, M.L.; Ávila, E.E. Measurements of Natural Deposition Ice Nuclei in Córdoba, Argentina. Atmos. Chem. Phys. 2013, 13, 3111–3119. [Google Scholar] [CrossRef]
- Al-Naimi, R.; Saunders, C.P.R. Measurements of Natural Deposition and Condensation-Freezing Ice Nuclei with a Continuous Flow Chamber. Atmos. Environ. 1985, 19, 1871–1882. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Wang, X.; Gao, R.; Yuan, L.; Chen, K.; Shan, Y. The Measurement and Parameterization of Ice Nucleating Particles in Different Backgrounds of China. Atmos. Res. 2016, 181, 72–80. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, Y.; Chen, K.; Chen, Q.; He, C.; Sun, L. The Measurement of Ice Nucleating Particles at Tai’an City in East China. Atmos. Res. 2020, 232, 104684. [Google Scholar] [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results from Laboratory Experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Rogers, D.C.; DeMott, P.J.; Kreidenweis, S.M. Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res. Atmos. 2001, 106, 15053–15063. [Google Scholar] [CrossRef]
- Niu, S.; Chen, Y.; An, X.; Huang, S. Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan area. J. Nanjing Inst. Meteorol. 2000, 6, 294–298, (In Chinese with English Abstract). [Google Scholar]
- Haikin, N.; Galanti, E.; Reisin, T.G.; Mahrer, Y.; Alpert, P. Inner Structure of Atmospheric Inversion Layers over Haifa Bay in the Eastern Mediterranean. Boundary-Layer Meteorol. 2015, 156, 471–487. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, T.; Liu, J.; Lv, L.; Dong, Y.; Chen, Z. Atmosphere Boundary Layer Height and Its Effect on Air Pollutants in Beijing during Winter Heavy Pollution. Atmos. Res. 2019, 215, 305–316. [Google Scholar] [CrossRef]
- Zheng, B.; Chen, S.; Li, Y.; Fan, R.; Kong, L.; Hao, L. Aircraft observation and analysis of vertical distribution of aerosols in Turpan and Ruoqiang in winter. Arid. Land Geogr. 2022, 1–15, (In Chinese with English Abstract). [Google Scholar]
- Li, J.; Zhuang, G.; Huang, K.; Lin, Y.; Xu, C.; Yu, S. Characteristics and Sources of Air-Borne Particulate in Urumqi, China, the Upstream Area of Asia Dust. Atmos. Environ. 2008, 42, 776–787. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Liu, H.; Zhang, G.; Yan, Y.; He, J. Relay Transport of Aerosols to Beijing-Tianjin-Hebei Region by Multi-Scale Atmospheric Circulations. Atmos. Environ. 2017, 165, 35–45. [Google Scholar] [CrossRef]
- Liu, D.; Yan, W.; Kang, Z.; Liu, A.; Zhu, Y. Boundary-Layer Features and Regional Transport Process of an Extreme Haze Pollution Event in Nanjing, China. Atmos. Pollut. Res. 2018, 9, 1088–1099. [Google Scholar] [CrossRef]
- Stith, J.L.; Ramanathan, V.; Cooper, W.A.; Roberts, G.C.; DeMott, P.J.; Carmichael, G.; Hatch, C.D.; Adhikary, B.; Twohy, C.H.; Rogers, D.C.; et al. An Overview of Aircraft Observations from the Pacific Dust Experiment Campaign. J. Geophys. Res. 2009, 114, D05207. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Turap, Y.; Rekefu, S.; Wang, G.; Talifu, D.; Gao, B.; Aierken, T.; Hao, S.; Wang, X.; Tursun, Y.; Maihemuti, M.; et al. Chemical Characteristics and Source Apportionment of PM2.5 during Winter in the Southern Part of Urumqi, China. Aerosol Air Qual. Res. 2019, 19, 1325–1337. [Google Scholar] [CrossRef]
- Li, H.; He, Q.; Liu, X. Identification of Long-Range Transport Pathways and Potential Source Regions of PM2.5 and PM10 at Akedala Station, Central Asia. Atmosphere 2020, 11, 1183. [Google Scholar] [CrossRef]
- Tobo, Y.; Uetake, J.; Matsui, H.; Moteki, N.; Uji, Y.; Iwamoto, Y.; Miura, K.; Misumi, R. Seasonal Trends of Atmospheric Ice Nucleating Particles Over Tokyo. J. Geophys. Res. Atmos. 2020, 125, e2020JD033658. [Google Scholar] [CrossRef]
- Adams, M.P.; Tarn, M.D.; Sanchez-Marroquin, A.; Porter, G.C.E.; O’Sullivan, D.; Harrison, A.D.; Cui, Z.; Vergara-Temprado, J.; Carotenuto, F.; Holden, M.A.; et al. A Major Combustion Aerosol Event Had a Negligible Impact on the Atmospheric Ice-Nucleating Particle Population. J. Geophys. Res. Atmos. 2020, 125, e2020JD032938. [Google Scholar] [CrossRef]
- Knopf, D.A.; Wang, B.; Laskin, A.; Moffet, R.C.; Gilles, M.K. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City: Ice nucleation on anthropogenic aerosol. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Wang, B.; Lambe, A.T.; Massoli, P.; Onasch, T.B.; Davidovits, P.; Worsnop, D.R.; Knopf, D.A. The deposition ice nucleation and immersion freezing potential of amorphous secondary organic aerosol: Pathways for ice and mixed-phase cloud formation. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Zhu, J.; Penner, J.E. Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice nucleation scheme. Atmos. Chem. Phys. 2020, 20, 7801–7827. [Google Scholar] [CrossRef]
Temperature (°C) | Relative Humidity with Respect to Water (RH) (%) | Relative Humidity with Respect to Ice (RH) (%) |
---|---|---|
−17 | 95 | 112.2 |
100 | 118.1 | |
105 | 124 | |
−20 | 95 | 115.5 |
100 | 121.6 | |
105 | 127.7 | |
−23 | 95 | 119 |
100 | 125.3 | |
105 | 131.5 | |
−26 | 95 | 122.5 |
100 | 129 | |
105 | 135.4 |
Citation | Location | Condition | INAS (m) |
---|---|---|---|
Schrod et al. (2017) [33] | Eastern Mediterranean from the aircraft | T: −30 °C to −20 °C, RH: 115% to 135% | 1.5 × 10 to 2 × 10 |
Price et al. (2018) [34] | Atlantic from the aircraft | T: −26 °C to −7 °C, immersion-freezing | 1 × 10 to 1 × 10 |
Porter et al. (2022) [35] | North Pole from the ship and the balloon borne platform | T: −35 °C to −5 °C, immersion-freezing | 1 × 10 to 2 × 10 |
Paramonov et al. (2018) [36] | Nei Monggol, China from the ground surface | T: −40 °C to −30 °C, RH: 76% to 102% | 2 × 10 to 3 × 10 |
This study | Xingjiang, China from the aircraft | T: −26 °C to −17 °C, RH: 112.2% to 135.4% | 6 × 10 to 6 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Yin, Y.; Chen, K.; He, C.; Jiang, H.; Zheng, B.; Li, B.; Li, Y.; Lv, Y. Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations. Atmosphere 2022, 13, 1447. https://doi.org/10.3390/atmos13091447
Wu J, Yin Y, Chen K, He C, Jiang H, Zheng B, Li B, Li Y, Lv Y. Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations. Atmosphere. 2022; 13(9):1447. https://doi.org/10.3390/atmos13091447
Chicago/Turabian StyleWu, Jiaxin, Yan Yin, Kui Chen, Chuan He, Hui Jiang, Bohua Zheng, Bin Li, Yuanyuan Li, and Yiying Lv. 2022. "Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations" Atmosphere 13, no. 9: 1447. https://doi.org/10.3390/atmos13091447
APA StyleWu, J., Yin, Y., Chen, K., He, C., Jiang, H., Zheng, B., Li, B., Li, Y., & Lv, Y. (2022). Vertical Distribution of Atmospheric Ice Nucleating Particles in Winter over Northwest China Based on Aircraft Observations. Atmosphere, 13(9), 1447. https://doi.org/10.3390/atmos13091447