Spatial and Temporal Characteristics of High-Temperature Heat Wave Disasters in Chongqing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data and Source
2.3. Calculation and Statistical Analysis of High-Temperature Heat Wave Indicators
2.4. Analysis of Subsurface Types and Urbanization Levels in Chongqing
3. Results and Discussion
3.1. Temporal Variation Characteristics of Chongqing’s High-Temperature Heat Waves
3.2. Spatial Distribution Characteristics of High-Temperature Heat Waves in Chongqing
3.3. Interdecadal Spatial Trends of High-Temperature Heat Waves in Chongqing
3.4. Factors Influencing the Heat Waves in Chongqing
4. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
IPCC | Intergovernmental Panel on Climate Change |
PET | Physiological Equivalent Temperature |
IHW | Intensity of Heat Waves |
NHD | Number of Heat Wave Days |
FHW | Frequency of Heat Waves |
RCMs | Regional Climate Models |
UHI | Urban Heat Island |
CLC | Coastal Low Cloudiness |
LST | Land Surface Temperature |
VIIRS | Visible Infrared Imaging Radiometer Suite |
DMSP | Defense Meteorological Satellite Program |
EAHT | Effective Accumulated High Temperature |
ARIMA | Autoregressive Integrated Moving Average |
ACF | Autocorrelation Figure |
PACF | Partial Autocorrelation Figure |
USR | Urban Surface Roughness |
UEL | Urban Ecological Land |
References
- Veal, A.J. Climate change 2021: The physical science basis, 6th report. World Leis. J. 2021, 63, 443–444. [Google Scholar] [CrossRef]
- Walczykiewicz, T.; Filipiak, J. SWOT analysis of the Institute of Meteorology and Water Management—National Research Institute in the context of World Meteorological Organization Reform adopted during its 18th Congress. Meteorol. Hydrol. Water Manag. Res. Oper. Appl. 2020, 8, 5–11. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef]
- Shiva, J.S.; Chandler, D.G.; Kunkel, K.E. Localized Changes in Heat Wave Properties Across the United States. Earth’s Future 2019, 7, 300–319. [Google Scholar] [CrossRef]
- Allen, M.J.; Sheridan, S.C. Mortality risks during extreme temperature events (ETEs) using a distributed lag non-linear model. Int. J. Biometeorol. 2018, 62, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Linares, C.; Díaz, J.; Negev, M.; Martínez, G.S.; Debono, R.; Paz, S. Impacts of climate change on the public health of the Mediterranean Basin population—Current situation, projections, preparedness and adaptation. Environ. Res. 2020, 182, 109107. [Google Scholar] [CrossRef]
- National Meteorological Center; Public Meteorological Service Center of China Meteorological Administration. High-Temperature Heat Waves Rating. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China; China National Standardization Administration: Beijing, China, 2012; p. 8. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef] [PubMed]
- Aubrecht, C.; Özceylan, D. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ. Int. 2013, 56, 65–77. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.-T. Comparison of health risks by heat wave definition: Applicability of wet-bulb globe temperature for heat wave criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef]
- Pu, X.; Wang, T.J.; Huang, X.; Melas, D.; Zanis, P.; Papanastasiou, D.K.; Poupkou, A. Enhanced surface ozone during the heat wave of 2013 in Yangtze River Delta region, China. Sci. Total Environ. 2017, 603, 807–816. [Google Scholar] [CrossRef]
- Huynen, M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The Impact of Heat Waves and Cold Spells on Mortality Rates in the Dutch Population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Kalkstein, L.S.; Jamason, P.F.; Greene, J.S.; Libby, J.; Robinson, L. The Philadelphia Hot Weather-Health Watch/Warning System: Development and Application, Summer 1995. Bull. Am. Meteorol. Soc. 1996, 77, 1519–1528. [Google Scholar] [CrossRef]
- Chen, M.; Geng, F.H.; Ma, L.M.; Zhou, W.D.; Shi, H.; Ma, J.H. Analysis of heat wave events in the Shanghai area in the last 138 years. Highl. Meteorol. 2013, 32, 2597–2607. [Google Scholar]
- Yuan, C.; Adelia, A.S.; Mei, S.; He, W.; Li, X.-X.; Norford, L. Mitigating intensity of urban heat island by better understanding on urban morphology and anthropogenic heat dispersion. Build. Environ. 2020, 176, 106876. [Google Scholar] [CrossRef]
- Bell, J.E.; Brown, C.L.; Conlon, K.; Herring, S.; Kunkel, K.E.; Lawrimore, J.; Luber, G.; Schreck, C.; Smith, A.; Uejio, C. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. Assoc. 2018, 68, 265–287. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmi, O.V.; Purvis, K.L.; Harriss, R.C. Designing a Geospatial Information Infrastructure for Mitigation of Heat Wave Hazards in Urban Areas. Nat. Hazards Rev. 2004, 5, 147–158. [Google Scholar] [CrossRef]
- Huang, H.; Jie, P. Research on the Characteristics of High-Temperature Heat Waves and Outdoor Thermal Comfort: A Typical Space in Chongqing Yuzhong District as an Example. Buildings 2022, 12, 625. [Google Scholar] [CrossRef]
- Dian-Xiu, Y.; Ji-Fu, Y.; Zheng-Hong, C.; You-Fei, Z.; Rong-Jun, W. Spatial and Temporal Variations of Heat Waves in China from 1961 to 2010. Adv. Clim. Chang. Res. 2014, 5, 66–73. [Google Scholar] [CrossRef]
- Hu, L.; Huang, G.; Qu, X. Spatial and temporal features of summer extreme temperature over China during 1960–2013. Theor. Appl. Climatol. 2017, 128, 821–833. [Google Scholar] [CrossRef]
- Kuglitsch, F.G.; Toreti, A.; Xoplaki, E.; Della-Marta, P.M.; Zerefos, C.S.; Türkeş, M.; Luterbacher, J. Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett. 2010, 37, L04802. [Google Scholar] [CrossRef]
- Li, X.-X. Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity. Sci. Total Environ. 2020, 721, 137664. [Google Scholar] [CrossRef] [PubMed]
- Lhotka, O.; Kyselý, J. Spatial and temporal characteristics of heat waves over Central Europe in an ensemble of regional climate model simulations. Clim. Dyn. 2015, 45, 2351–2366. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, L.; He, B.; Jin, X.; Zhang, Q.; Razafindrabe, B.; You, H. Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Nat. Hazards 2014, 76, 1415–1430. [Google Scholar] [CrossRef]
- Tian, L.; Lu, J.; Li, Y.; Bu, D.; Liao, Y.; Wang, J. Temporal characteristics of urban heat island and its response to heat waves and energy consumption in the mountainous Chongqing, China. Sustain. Cities Soc. 2021, 75, 103260. [Google Scholar] [CrossRef]
- Son, J.-Y.; Lee, J.-T.; Anderson, G.B.; Bell, M.L. The Impact of Heat Waves on Mortality in Seven Major Cities in Korea. Environ. Health Perspect. 2012, 120, 566–571. [Google Scholar] [CrossRef]
- Zhang, K.; Li, Z.; Liu, J.; Liu, F.; Bai, J. Study on the spatial and temporal characteristics of high temperature heat wave in Hebei and its impact on industry and transportation. Geogr. Geogr. Inf. Sci. 2011, 27, 90–95. [Google Scholar]
- Yang, Z.; Shanyou, Z.; Junwei, H.; Yi, L.; Jiamin, X.; Wen, D. Study on the spatial and temporal distribution of high temperature heat waves in Nanjing. J. Geoinf. Sci. 2018, 20, 1613–1621. [Google Scholar]
- Dousset, B.; Gourmelon, F. Satellite multi-sensor data analysis of urban surface temperatures and landcover. ISPRS J. Photogramm. Remote Sens. 2003, 58, 43–54. [Google Scholar] [CrossRef]
- Clemesha, R.E.S.; Guirguis, K.; Gershunov, A.; Small, I.J.; Tardy, A. California heat waves: Their spatial evolution, variation, and coastal modulation by low clouds. Clim. Dyn. 2018, 50, 4285–4301. [Google Scholar] [CrossRef]
- Chen, T.-L.; Lin, H.; Chiu, Y.-H. Heat vulnerability and extreme heat risk at the metropolitan scale: A case study of Taipei metropolitan area, Taiwan. Urban Clim. 2022, 41, 101054. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; APA PsycNet: Washington, DC, USA, 1962. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y. An Inter-comparison of Three Heat Wave Types in China during 1961–2010: Observed Basic Features and Linear Trends. Sci. Rep. 2017, 7, srep45619. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Amatus, G. Spatiotemporal changes of heat waves and extreme temperatures in the main cities of China from 1955 to 2014. Nat. Hazards Earth Syst. Sci. 2020, 20, 1889–1901. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, B.; You, Q.; Zhang, Y.; Ullah, S. Observed changes in heat waves with different severities in China during 1961–2015. Theor. Appl. Climatol. 2020, 141, 1529–1540. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y. Population exposure to extreme heat in China: Frequency, intensity, duration and temporal trends. Sustain. Cities Soc. 2020, 60, 102282. [Google Scholar] [CrossRef]
- Wang, J.; Meng, B.; Pei, T.; Du, Y.; Zhang, J.; Chen, S.; Tian, B.; Zhi, G. Mapping the exposure and sensitivity to heat wave events in China’s megacities. Sci. Total Environ. 2020, 755, 142734. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Liu, X.; Zhu, H.; Li, Y. Features of Urban Heat Island in Mountainous Chongqing from a Dense Surface Monitoring Network. Atmosphere 2019, 10, 67. [Google Scholar] [CrossRef]
- Lu, J.; Li, C.; Yu, C.; Jin, M.; Dong, S. Regression Analysis of the Relationship between Urban Heat Island Effect and Urban Canopy Characteristics in a Mountainous City, Chongqing. Indoor Built Environ. 2012, 21, 821–836. [Google Scholar] [CrossRef]
- Ming, Y.; Liu, Y.; Liu, X. Spatial pattern of anthropogenic heat flux in monocentric and polycentric cities: The case of Chengdu and Chongqing. Sustain. Cities Soc. 2022, 78, 103628. [Google Scholar] [CrossRef]
- Bingyan, C.; Weiguo, S.; Qu, G. Analysis of climate characteristics and circulation situation of summer high temperature in Chongqing area. J. Southwest. Univ. (Nat. Sci. Ed.) 2010, 32, 73–80. [Google Scholar] [CrossRef]
- Xiaoran, L.; Bingyan, C.; Tianyu, Z.; Hao, Z.; Baogang, Y. Characterization of temperature change in Chongqing area in the last 46 years. Highl. Mt. Meteorol. Res. 2009, 29, 39–43. [Google Scholar]
- Guo, Q.; Sun, W.; Cheng, B.; Duan, C. Climatic characteristics of high temperature weather and its circulation situation in Chongqing in the past 48 years. Yangtze River Basin Resour. Environ. 2009, 18, 52–59. [Google Scholar]
- Guo, J.; Han, G.; Xie, Y.; Cai, Z.; Zhao, Y. Exploring the relationships between urban spatial form factors and land surface temperature in mountainous area: A case study in Chongqing city, China. Sustain. Cities Soc. 2020, 61, 102286. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, H. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci. Total Environ. 2018, 635, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wang, F.; Wang, K.; Wang, H.; Li, L. Urban ecological land and natural-anthropogenic environment interactively drive surface urban heat island: An urban agglomeration-level study in China. Environ. Int. 2021, 157, 106857. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy Rev. 2017, 80, 1613–1640. [Google Scholar] [CrossRef]
- Stone, B.; Hess, J.J.; Frumkin, H. Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ. Health Perspect. 2010, 118, 1425–1428. [Google Scholar] [CrossRef] [Green Version]
Meteorological Station Number | Name of Station | Latitude (°) | Longitude (°) | Elevation (m) | Data Start Date |
---|---|---|---|---|---|
57348 | Fengjie | 31.067 | 109.533 | 299.8 | 1954 |
57432 | Wanzhou | 30.776 | 108.400 | 186.7 | 1954 |
57502 | Dazu | 29.700 | 105.700 | 377.6 | 1957 |
57512 | Hechuan | 29.966 | 106.283 | 230.6 | 1959 |
57516 | Shapingba | 29.576 | 106.461 | 259.1 | 1951 |
57517 | Jiangjin | 29.280 | 106.25 | 261.4 | 1955 |
57520 | Changshou | 29.833 | 107.067 | 377.6 | 1959 |
57523 | Fengdu | 29.850 | 107.733 | 290.5 | 1959 |
57536 | Qianjiang | 29.533 | 108.783 | 607.3 | 1959 |
57537 | Pengshui | 29.300 | 108.167 | 322.2 | 1951 |
57612 | Qijiang | 29.006 | 106.643 | 254.8 | 1957 |
57633 | Youyang | 28.833 | 108.767 | 664.1 | 1951 |
2021 | 2022 | 2023 | 2024 | 2025 | 2026 | 2027 | 2028 | 2029 | 2030 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Average IHW prediction model | Prediction | 75.34 | 110.06 | 94.84 | 105.91 | 111.84 | 91.58 | 122.51 | 116.24 | 124.44 | 130.48 |
UCL | 132.49 | 167.27 | 153.56 | 165.65 | 171.61 | 154.62 | 185.59 | 179.65 | 187.96 | 194.00 | |
LCL | 18.19 | 52.85 | 36.11 | 46.17 | 52.07 | 28.54 | 59.43 | 52.82 | 60.92 | 66.95 | |
Average NHD prediction model | Prediction | 23.45 | 36.60 | 33.01 | 30.70 | 44.05 | 31.90 | 41.53 | 36.92 | 43.89 | 47.54 |
UCL | 42.58 | 55.73 | 52.36 | 50.06 | 63.39 | 51.34 | 61.26 | 56.61 | 63.60 | 67.28 | |
LCL | 4.32 | 17.47 | 13.66 | 11.34 | 24.71 | 12.45 | 21.80 | 17.22 | 24.18 | 27.79 | |
Average FHW prediction model | Prediction | 3.01 | 5.65 | 4.49 | 4.51 | 6.01 | 3.88 | 7.01 | 5.01 | 5.13 | 5.85 |
UCL | 5.35 | 8.01 | 6.86 | 6.88 | 8.40 | 6.29 | 9.53 | 7.54 | 7.71 | 8.55 | |
LCL | 0.67 | 3.29 | 2.11 | 2.13 | 3.62 | 1.46 | 4.50 | 2.47 | 2.56 | 3.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Jie, P.; Yang, Y.; Mi, S. Spatial and Temporal Characteristics of High-Temperature Heat Wave Disasters in Chongqing. Atmosphere 2022, 13, 1396. https://doi.org/10.3390/atmos13091396
Huang H, Jie P, Yang Y, Mi S. Spatial and Temporal Characteristics of High-Temperature Heat Wave Disasters in Chongqing. Atmosphere. 2022; 13(9):1396. https://doi.org/10.3390/atmos13091396
Chicago/Turabian StyleHuang, Haijing, Pengyu Jie, Yufei Yang, and Shaoying Mi. 2022. "Spatial and Temporal Characteristics of High-Temperature Heat Wave Disasters in Chongqing" Atmosphere 13, no. 9: 1396. https://doi.org/10.3390/atmos13091396
APA StyleHuang, H., Jie, P., Yang, Y., & Mi, S. (2022). Spatial and Temporal Characteristics of High-Temperature Heat Wave Disasters in Chongqing. Atmosphere, 13(9), 1396. https://doi.org/10.3390/atmos13091396