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Abstract: In the background of global warming, heat wave disasters have become more frequent
globally, and mountainous cities are more seriously affected by heat wave disasters due to the
special features of topography and urban morphology. This paper analyzes the temporal and spatial
distribution characteristics of heat wave disasters in Chongqing, a mountainous city. The results
shows that heat wave disasters in Chongqing tend to increase overall and decrease locally before
increasing. Significant growth in heat waves since 2010 and time series model prediction analysis
shows that Chongqing will face more severe heat waves in the future. The spatial distribution of heat
wave disasters varies significantly, high in the middle and low at the ends. There is a tendency for
the center of heat wave disasters to shift from the south-central part of Chongqing to the northeast.
In addition to the influence of atmospheric circulation and mountain topography, the causes are also
positively related to urban development intensity and urbanization trends. It is necessary to develop
specific control and management measures for heat waves depending on the characteristics of them.
The take-home message of the study is the spatial and temporal trends of heat waves in Chongqing
to provide a theoretical basis for high-temperature mitigation.

Keywords: high-temperature heat waves; Chongqing; spatial and temporal characteristics;
influencing factors

1. Introduction

In recent years, there has been continued evidence that the Earth’s surface temperature
is showing a long-term increase. The latest Sixth Assessment Report of the Intergovern-
mental Panel on Climate Change (IPCC), states that human-influenced global warming is
responding to an increase in the frequency and intensity of extreme heat events, seawater
warming, and heavy precipitation [1].The World Meteorological Organization, WMO noted
during the congress in June 2019 that temperatures in many parts of the world are at record
highs again [2]. Among its latest statistical ranking of the impact of global natural disasters,
extreme temperature impacts ranked fourth, after floods, storms, and earthquakes, before
disasters such as landslides, droughts, and forest fires. High-temperature heat waves have
become the most serious climate disasters in some countries [3,4], which are increasingly
attracting attention to prevention and control of heat wave disasters [5,6].

High-temperature heat waves are weather processes with high temperature, high
humidity, and long duration, making the human body feel uncomfortable, as well as poten-
tially threatening public health and life safety, increasing energy consumption, and affecting
social production activities [7]. Due to differences in geographical conditions and economic
status, there is no uniform standard for measuring heat waves in different regions of the
world, and in the process of conducting research on heat waves, researchers have defined
and standardized heat waves differently. Heo et al. developed the human physiological
equivalent temperature (PET) using the human heat wave equilibrium model, considering
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PET > 41 ◦C as a heat wave warning criterion [8]. Aubrecht et al. defined a weather process
with a duration of more than 3 days and a daily maximum temperature ≥ 30 ◦C as a high-
temperature heat wave [9]. Heo et al. constructed a formula to calculate the heat index
using temperature and relative humidity for classifying high-temperature heat waves [10].
To date, there is no universally accepted definition of a high-temperature heat wave. Most
international organizations and developed countries generally define high-temperature
heat waves in terms of two scales: maximum daily temperature and duration [11–14].

Research on high-temperature heat waves involves multidisciplinary research areas
such as meteorology, disaster science, environmental science, urban planning, and medicine
and health [15–18], while the research on the spatial and temporal characteristics of high-
temperature heat wave disasters includes two levels: national and regional. At the national
level, Chinese scholars studied the spatial and temporal characteristics of the intensity of
heat waves (IHW), the frequency of heat waves (FHW), and the number of heat wave days
(NHD) in China from 1961 to 2010 using daily maximum temperatures and related heat
wave indicators from 753 stations nationwide. Meanwhile, it was found that the FHW,
NHD, and IHW of high-temperature heat waves showed chronological characteristics,
with a decreasing and then increasing trend from the 1960s to the 2010s [19]. Xinjiang
and southeastern China are the two main regions with high frequency of extreme heat
events [20]. When it comes to international research, Kuglitsch et al. [21] studied the
temporal characteristics of high-temperature heat waves in the Mediterranean region by
using data statistics from 246 meteorological stations in the eastern Mediterranean from
1961 to 2006, finding that the increase in IHW in Mediterranean countries was higher
than previously reported; Xian-XiangLi studied the heat wave trends in Southeast Asian
countries during 1979–2018 and noticed that heat waves are becoming more frequent and
longer in most Southeast Asian countries [22]. Some researchers studied the spatial and
temporal characteristics of high-temperature heat waves in Central European countries
by comparing data differences between different regional climate models (RCMs) [23].
At the regional level, Chinese academics analyzed the spatial and temporal variation
of heat waves in the Nanjing metropolitan area, China, discovering that factors such as
impermeable substrates and highly reflective building materials accelerate the urban heat
island (UHI) effect and interact with heat waves [24]. NHD in Chongqing, a high-density
mountainous city, has an impact on factors like UHI [25]. NHD in different cities also
affects health-related factors, including death rates [26]. Zhang, Kehui et al. [27] analyzed
the data on NHD, FHW, and extremely high temperature in the Hebei region from 1956 to
2009, deriving the spatial and temporal distribution characteristics of high-temperature
heat waves in the Hebei region. Chen Min et al. [14] defined the three-level criteria for heat
waves in Shanghai and introduced the concept of “high-temperature effective accumulation
temperature” to analyze the multiscale time-frequency characteristics of heat waves in
the region. Zhou Yang et al. [28] obtained high spatial resolution of near-surface air
temperature impact conditions by processing multisource remote sensing data in order to
study the spatial distribution characteristics of heat wave disasters in Nanjing. There are
also many international studies at this level. Dousset et al. [29] used remote sensing data to
analyze the spatial and temporal variability of Paris land surface temperature (LST) and
studied high-temperature heat waves in combination with physical properties of the land
surface. Rachel E. S. Clemesha et al. [30] analyzed the spatial and temporal evolution of
high-temperature heat waves in California based on coastal low cloudiness (CLC), a key
factor of California’s summer coastal climate, which revealed that heat waves are unusually
intense along the coast.

Under the background of the overlapping of climate change and the urbanization
process, global warming combined with the characteristics of dense urban population with
space and a high degree of economic integration has triggered urban heat waves. Moun-
tain cities have more intense heat wave disasters and more complex changes due to their
complex topography, special substrate environment, dense buildings, and concentrated
population; however, the dynamic change characteristics of heat waves in mountain cities
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and their influencing factors have been explored less from the perspective of temporal
evolution and spatial distribution in the past [31]. Motivated by the above-mentioned
knowledge gaps, this study is dedicated to exploring the spatial and temporal distribu-
tion characteristics of high-temperature heat waves in Chongqing in order to propose
predictions and analyzing influencing factors based on research data. According to the
overall objective, the specific objectives of this study are: (1) through statistical analysis of
meteorological station data to summarize the trend of FHW, NHD, and IHW over time
in Chongqing from 1959 to 2020; (2) to analyze the differences in the spatial distribution
of high-temperature heat waves in different regions of Chongqing; (3) to analyze the sub-
surface type and urbanization level of each region in Chongqing and, combined with
the spatial distribution of high-temperature heat waves, derive the influencing factors of
high-temperature heat waves in Chongqing. Overall, it provides a basis for disaster risk
prevention and control strategy development.

2. Materials and Methods
2.1. Research Area

Chongqing is one of the four “stove” cities in China (the four largest Chinese cities
with the hottest summer weather), with a city area of 82,402 square kilometers, located
between 105◦11′–110◦11′ East longitude and 28◦10′–32◦13′ North latitude, in the upper
reaches of the Yangtze River. Around the city there are mountains such as Daba Mountain,
Wuling Mountain, Wushan Mountain, and Dalou Mountain, the terrain is mainly hilly and
mountainous. The climate is subtropical monsoon, with hot and dry summers and uneven
rainfall. The average annual rainfall is abundant, and the average rainfall by season is
315 mm in spring, 488 mm in summer, 318 mm in autumn, and 69 mm in winter, with
precipitation mostly concentrated in May–September, accounting for about 70% of the
total annual precipitation. The average annual relative humidity is mostly 70–80%, which
belongs to the high humidity area in China. According to Köppen climate classification
rules, Chongqing belongs to type Cfa (humid subtropical climate). July and August are
the sunniest months of the year, with sunshine hours accounting for about 40% of the year.
Long hours and high intensity of solar radiation are the direct cause of the formation of
high-temperature heat waves in Chongqing.

2.2. Data and Source

The data of 12 meteorological observation stations (including 1 national benchmark
climate station and 11 national basic meteorological stations) in Chongqing provided by
the National Meteorological Science Data Center of China were selected as data sources.
In order to ensure the consistency and coherence of the meteorological data, the starting
time of the meteorological station data records was sorted out, determining 1959 as the
starting time and 2020 as the cut-off time for the latest start of records among the 12 stations.
According to the definition of high-temperature heat waves by the China Meteorological
Administration, the meteorological data with daily maximum temperature greater than
or equal to 35 ◦C and duration greater than or equal to 3 days from May to September
1959–2020 at 12 meteorological stations were programmed using VBA macro language for
analysis (Figure 1, Table 1).
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57523 Fengdu 29.850 107.733 290.5 1959 
57536 Qianjiang 29.533 108.783 607.3 1959 
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Figure 1. Location of Chongqing and Chongqing city elevation and meteorological station distribution
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Table 1. Basic information of 12 weather stations in Chongqing.

Meteorological
Station Number Name of Station Latitude (◦) Longitude (◦) Elevation (m) Data Start Date

57348 Fengjie 31.067 109.533 299.8 1954
57432 Wanzhou 30.776 108.400 186.7 1954
57502 Dazu 29.700 105.700 377.6 1957
57512 Hechuan 29.966 106.283 230.6 1959
57516 Shapingba 29.576 106.461 259.1 1951
57517 Jiangjin 29.280 106.25 261.4 1955
57520 Changshou 29.833 107.067 377.6 1959
57523 Fengdu 29.850 107.733 290.5 1959
57536 Qianjiang 29.533 108.783 607.3 1959
57537 Pengshui 29.300 108.167 322.2 1951
57612 Qijiang 29.006 106.643 254.8 1957
57633 Youyang 28.833 108.767 664.1 1951

2.3. Calculation and Statistical Analysis of High-Temperature Heat Wave Indicators

In this study, we analyze three key indicators of heat waves: FHW, NHD, and IHW.
FHW refers to the average number of heat waves (d/a: “d” is the number of days and “a”
is the annual) at a site in a given year. NHD is the average number of accumulated days of
heat waves (d/a) at a site in a given year. IHW is calculated using the concept of effective
accumulated high temperature (EAHT), which refers to the annual average (◦C-d/a) of the
cumulative values of daily maximum temperatures above the heat wave threshold (35 ◦C)
during a heat wave at a station. For statistical and trend analysis of the above three heat
waves data, the Mann–Kendall (M-K test has the characteristics of not being affected by
sample values, distribution types, etc., and is recommended by the WMO and widely used)
nonparametric rank order statistical test [32,33] was used to determine the local change
trend and sudden change test for their time series; the details are as follows:

Let the original sequence be y1, y2, . . . , yn, the i-th sample yi is greater than yi (1 ≤ j ≤ i)
cumulatively denoted as mi, and define the statistic:

dk = Σk
i=1 mi, (2 ≤ k ≤ n) (1)

Assuming that the original series is random and independent, the mean of dk is
denoted by E(dk) and the variance by var(dk):
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E(dk) = k(k− 1)/4 (2)

Var(dk) = k(k− 1)(2k + 5)/72(2 ≤ k ≤ n) (3)

Standardizing dk, we obtain:

UFk =
dk − E(dk)√

Var(dk)
(k = 1, 2, · · · , n) (4)

UFk in the above equation satisfies the standard normal distribution, and for a given
significance level α, if |UFk| ≥ Uα, it means that the sample has a significant change in
trend. After arranging the samples in reverse order and recalculating them according to
the above equation, UBk is obtained, and UBk satisfies:{

UBk = −UBk
k = n + 1− k

(5)

UFk and UBk are plotted as UF and UB curves. If UFk and UBk intersect and the
intersection point is within the confidence interval, the point may be a mutation point. If
both UFk and UBk are greater than 0, it indicates that the time series is an upward trend;
if both curves are less than 0, the time series is a downward trend. Given the significance
level α = 0.05, U0.05 = ±1.9, if both UFk and UBk exceed the critical value at the same time,
it indicates that the time series is significantly rising or falling; at the significance level
α = 0.01, U0.01 = ±2.56, if both UFk and UBk exceed the critical value at the same time, it
indicates that the time series is highly significantly rising or falling.

Then time series analysis in SPSS (IBM Company, version 26, from Chicago, IL, USA)
was used to fit forecasts for the 3 indicators of heat waves with forecast years 2021–2030.
ArcGIS Map software was used to map the spatial distribution of high-temperature heat
waves to study the spatial distribution patterns and trends of historical heat waves in
Chongqing, two methods were used: the ordinary Kriging interpolation method and the
natural intermittent point grading method.

2.4. Analysis of Subsurface Types and Urbanization Levels in Chongqing

Focusing on the spatial and temporal characteristics of heat waves in Chongqing, in
order to analyze the correlation between regional factors (subsurface types and urbanization
levels) and heat waves, Globe Land 30 global land cover data were used to analyze the
changes in subsurface types in Chongqing; according to the global night-time light remote
sensing data from the Resource and Environment Science and Data Center of the Chinese
Academy of Sciences, the changes of urbanization levels in Chongqing were analyzed.
Since there is a break in the night-time light remote sensing data around 2013, DMSP data
from 1992 to 2013, and visible infrared imaging radiometer suite (VIIRS) data after 2013, the
two data cannot be converted and compared, so the night-time light defense meteorological
satellite program (DMSP) data before 2013 are used for comparison in this study.

3. Results and Discussion
3.1. Temporal Variation Characteristics of Chongqing’s High-Temperature Heat Waves

Comprehensive statistics of daily maximum temperature data from May to September
at 12 meteorological stations in Chongqing from 1959 to 2020 show that the average FHW,
NHD, and IHW in Chongqing over 62 years were 3.2 times/a, 20.2 d/a, and 46.7 ◦C·d/a.
The average duration of a single high-temperature heat wave reached 6.3d, which was more
than twice the 3d definition of a high-temperature heat wave by the China Meteorological
Administration. The average temperature during a high-temperature heat wave reached
37.3 ◦C, which was 2.3 ◦C higher than the standard 35 ◦C for heat waves. In order to clearly
show the global change characteristics of Chongqing high-temperature heat waves, the
data from all meteorological stations were studied by taking the average value.

The changes in the average FHW of all meteorological station in Chongqing from 1959
to 2020 are shown in Figure 2a, with a range of 0.8–7.0 times/a and a variation interval
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reaching 6.2 times/a, where the maximum value occurred in 2013 and the minimum value
occurred in 1993. Overall, the FHW showed a slow upward trend (green line in Figure 2a),
increasing at a growth rate of 0.0105 times/a.
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The changes in the average NHD of all meteorological stations in Chongqing from
1959 to 2020 are shown in Figure 3a, with a range of 3.2–46.2 d/a and a variation interval
reaching 43.0 d/a, in which the maximum value appeared in 2006 and the minimum
value appeared in 1993. Generally, the NHD showed an increasing trend (green line in
Figure 3a), with a growth rate of 0.0921 d/a. Using the minimum standard of a three-
day heat wave, the growth rate of the number of days was more than three times the
growth rate of the frequency, indicating that the duration of a single heat wave was also
increasing significantly.
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The average IHW of all Chongqing meteorological stations from 1959 to 2020 varies
as shown in Figure 4a, with a range of 4.3–46.2 ◦C·d/a and a variation interval reaching
41.9 ◦C·d/a, during which the maximum value happened in 2006 and the minimum value
happened in 1987. On the whole, the IHW showed a significant increasing trend (green
line in Figure 4a), with a growth rate of 0.4908 ◦C·d/a.
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For the further understanding of the local change characteristics and sudden change
time points of the high-temperature heat waves in Chongqing, the M-K test was used
to plot the trend curves, as shown in Figures 2b, 3b and 4b. In the figures, UF(k) is the
statistical series of the tested data calculated in time order, the positive or negative of its
value can represent the temporal change trend of the tested data. UB(k) is the statistical
series calculated in time inverse sequence. Its value UB(k) = −UF(k), (k = n, n − 1, . . . , 1).
U0.05 = ±1.9 at the significance level α = 0.05 and U0.01 = ±2.56 at the significance level
α = 0.01 given in the figure. When the UF(k) curve is outside the range framed by the
significance level straight line, it indicates a significant upward or downward trend at this
stage. If the intersection of UF(k) and UB(k) curves occurs and the intersection point lies
within the range framed by the significance level straight line, then the time corresponding
to the intersection point is the time when the sudden change begins.

The M-K test curve trends of the FHW, NHD, and IHW in Chongqing have a strong
consistency. Based on the change curve trends, the local changes of high-temperature heat
waves in Chongqing were divided into three stages. The first stage (1959–1978) was the
slow decreasing stage, the UF value in this stage was less than 0, but its curves were all
distributed around the X-axis, which proves that the heat waves in this stage had a slow
decreasing trend. The second stage (1978–2011) was the significant decreasing stage, the
UF value in this stage decreased significantly, among which the UF value in 1986–1994
was even below the lower threshold of α = 0.05. It indicates a significant decreasing
trend of high-temperature heat waves in this stage. The third stage (2011–2020) was the
growth stage, in which the UF value was greater than 0 and the growth rate was increasing,
showing a significant growth trend of high-temperature heat waves in Chongqing in this
stage. It can also be seen from the heat wave changes graph that the intersection points
of its UF(k) and UB(k) curves were both located near 2009, with the intersection points all
located within the range framed by the significance level straight line. It can be judged that
the three data of heat waves in Chongqing city began to change suddenly near 2009.

In addition, to further verify the temporal variation characteristics of the FHW, NHD,
and IHW in Chongqing and to make certain predictions on the future development trend
of high-temperature heat waves in Chongqing on the basis of verifying the measured data,
three indicators were firstly analyzed by the ARIMA model analysis in time series analysis,
and the stability analysis was firstly conducted according to the selected conditions of
autocorrelation figure (ACF) and partial autocorrelation figure (PACF), repeatedly verified.
The autoregressive (p), differential (d), and moving average (q) of the three indicators were
determined, followed by model construction with NHD (13,1,7), FHW (13,1,5), and IHW
(10,1,4). After fitting analysis, the fitted prediction graphs (Figure 5) of the three indicators
and the prediction table of heat wave indicators (Table 2) for the decade of 2021–2030
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were obtained, and it can be seen that all three indicators fit well. Furthermore, the trend
of the fitted data was similar to the measured data, showing a slow decline followed by
a rising trend. The predicted curve after 2020 showed a significant increase, which was
consistent with the rising trend after 2010. As to the predicted average values for the decade
of 2020–2030, NHD (37.0 d), FHW (5.1 times), and IHW (108.3 ◦C·d) were higher than the
average values of indicators in any decade during 1959–2020. It can be predicted that heat
waves in Chongqing will become increasingly severe in the future.
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Table 2. ARIMA model prediction table.

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Average IHW
prediction model

Prediction 75.34 110.06 94.84 105.91 111.84 91.58 122.51 116.24 124.44 130.48

UCL 132.49 167.27 153.56 165.65 171.61 154.62 185.59 179.65 187.96 194.00

LCL 18.19 52.85 36.11 46.17 52.07 28.54 59.43 52.82 60.92 66.95

Average NHD
prediction model

Prediction 23.45 36.60 33.01 30.70 44.05 31.90 41.53 36.92 43.89 47.54

UCL 42.58 55.73 52.36 50.06 63.39 51.34 61.26 56.61 63.60 67.28

LCL 4.32 17.47 13.66 11.34 24.71 12.45 21.80 17.22 24.18 27.79

Average FHW
prediction model

Prediction 3.01 5.65 4.49 4.51 6.01 3.88 7.01 5.01 5.13 5.85

UCL 5.35 8.01 6.86 6.88 8.40 6.29 9.53 7.54 7.71 8.55

LCL 0.67 3.29 2.11 2.13 3.62 1.46 4.50 2.47 2.56 3.15

A comprehensive analysis of the temporal change pattern of the FHW, NHD, and IHW
in Chongqing from 1959 to 2020 showed that the changing trend of the three key indicators
was highly consistent, with an overall increasing trend of higher and higher frequency,
more and more days, and more intense heat waves. There was a trend of decreasing and
then increasing in stages, especially since the 2010s when the three indicators increased
significantly. It can be judged combining the time series analysis model that the risk of
high-temperature heat wave disasters faced by Chongqing in the future will remain very
severe. This conclusion is consistent with the changes in heat waves in China over the
decades [34], with significant temperature increases over 40 years in Chongqing, which is
about 1.6 times warmer than the global warming trend [25]. The FHW, NHD, and IHW of
heat waves in Chongqing are the largest among the 31 cities studied [35]

3.2. Spatial Distribution Characteristics of High-Temperature Heat Waves in Chongqing

Comparing the average FHW, NHD, and IHW at 12 meteorological stations in Chongqing,
the station with the highest FHW was Qijiang, with 4.8 times/a, 1.50 times the average
frequency in Chongqing. The station with the highest NHD was Wanzhou, reaching 31.6 d/a,
1.56 times the average number of days in Chongqing. The station with the highest IHW
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was Fengdu, achieving 82.2 ◦C-d/a, which is 1.76 times of the average value in Chongqing.
Among the three statistics of all meteorological stations, Youyang station was the lowest, with
the FHW, NHD, and IHW only 0.2 times/a, 0.7d/a, and 0.6 ◦C-d/a respectively, which are
only 6.25%, 3.47% and 1.28% of the average value of Chongqing city.

By using the spatial interpolation tool of ArcGIS Map software, the three indicators of
high-temperature heat waves at each meteorological station in Chongqing were spatially
interpolated. The data weights of different locations in the overall space were calculated
by the distance between each meteorological observation point and the overall spatial
arrangement to derive a continuous spatial distribution map of high-temperature heat
waves, as shown in Figure 6. The spatial performance of the average FHW, NHD, and IHW
tended to be consistent among the stations, all showing a distribution with a high middle
and low sides. The area with the most severe heat wave disaster was located in central
Chongqing, where the FHW, NHD, and IHW at Wanzhou and Fengdu sites were in the first
rank. The southwest region was second only to the central part of the heat waves serious
area, this region contains Jiangjin, Qijiang, and other districts. The regions least affected by
heat waves were located in southeastern Chongqing, where two Youyang and Qianjiang
sites were much lower than other regions in terms of three indicators values.
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Chongqing; (a) spatial distribution of FHW; (b) spatial distribution of NHD; (c) spatial distribution
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3.3. Interdecadal Spatial Trends of High-Temperature Heat Waves in Chongqing

To explore the trend changes in the spatial distribution of high-temperature heat waves
in Chongqing, this paper divides the heat wave characteristics data from meteorological
stations in Chongqing into six interdecadal periods of 60s, 70s, 80s, 90s, 00s, and 10s and uses
ArcGIS software to spatially interpolate the interdecadal averages of three key indicators of
heat waves for each interdecadal period. This results in a spatial distribution diagram of the
FHW, NHD, and IHW for each interdecadal period (Figure 6). Since the natural intermittent
point method is graded each time based on the special situation of its own indicators, the
plots are not comparable with each other. In order to increase the comparability between
different interdecadal periods, the indicator scales of the FHW, NHD, and IHW spatial
distribution maps of different interdecadal periods are re-graded in Figure 7 (Figure 6 scale
is the scale generated by the natural intermittent point method), which makes the color
between each interdecadal period represented by the indicator values the same between
each interdecadal period, allowing for easy map reading and comparison.
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It is shown in Figure 7 that the interdecade spatial trends of the three heat wave
indicators in Chongqing had strong consistency. During the period from the 1960s to the
2010s, the 1980s was the era with the lowest heat wave impact. Meanwhile, the nearest
2010s was the era with the most severe heat wave disaster, with a significant increase in
the heat wave level and an obvious expansion of the impact area. The central area of heat
wave disasters showed a trend of shifting from the south-central to the northeastern part
of Chongqing. From the 1960s to 1970s, the most severe heat wave areas in Chongqing
were Fengdu, Pengshui, Qijiang, and other areas in the south-central part of Chongqing. In
2010s, the center of heat waves was Wanzhou (Wanxian was renamed Wanzhou District in
1998 and became the second largest city in Chongqing in 2010) and its surrounding areas,
which obviously shifted to the northeast. The areas least affected by heat waves are always
located in Youyang and Qianjiang in southeastern Chongqing (remote mountainous areas
with slower development), without much interdecadal variability and significant spatial
variation. Related studies have also shown significant interdecadal differences in heat
waves in China after the 1990s, with a significant increase in the spatial distribution of heat
waves over the next two decades [36]. Notable are the frequency, intensity, and duration of
extreme high temperatures in the southwest [37], further validating the interdecadal trend
of high-temperature heat waves in Chongqing.

3.4. Factors Influencing the Heat Waves in Chongqing

The causes of the spatial and temporal patterns of the FHW, NHD, and IHW in
Chongqing are more complicated. Combining relevant studies and scientific analyses
at home and abroad, it is concluded that there are two main influencing factors. Firstly,
regional natural factors, including atmospheric circulation conditions, topography and
topography, wind speed and direction [38,39]. Secondly, urban artificial factors, including
urban spatial structure, subsurface types, and urbanization levels [40,41].

General circulation conditions, latitude, altitude, and mountain range orientation of
the region in which the city is located are the most important factors affecting the climate
of mountainous cities [42]. It has been shown that the Chongqing area is influenced by
the eastward movement of the western Pacific subpressure and the westward extension of
the South Asian high pressure, forming a superposition of upper and lower high-pressure
situation. The prevalence of sinking airflow and suppressed convective activity are impor-
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tant reasons for the persistent high temperature in Chongqing area [43,44]. Meanwhile,
as seen in Figures 1 and 5, the severe heat wave area in Chongqing has a high overlap
with the Yangtze River valley under the enclosure of the Daba Mountain Range and the
Wuling Mountain Range, where the spatial distribution of high-temperature heat waves
is significantly influenced by the slowing down and shading effects of the mountainous
topography on wind speed and direction.

There are strong correlations between the spatial and temporal distribution of high-
temperature heat waves and the types of subsurface and urbanization levels. It has been
found that mountainous cities exacerbate the effects of high-temperature heat waves due to
higher urban surface roughness (USR) and building density, which affects their ventilation
efficiency [45] and increases the surface temperature. Mountain cities have an undulating
and rough subsurface, which leads to less wind speed and not easily dissipating heat,
exacerbating the impact of high-temperature heat waves. From Figure 8, it can be observed
that the subsurface types in areas with intense heat wave disasters, such as the main city of
Chongqing and Wanzhou district, were mostly artificial surfaces, and their artificial surface
areas increased from 0.70% in 2000 to 3.20% in 2020. Meanwhile, the subsurface types in
the southeast are mostly green cover, with weaker heat wave effects. The night-time light
remote sensing data in Figure 9 can characterize the urbanization level and intensity of
human activities in this region. It is known from the data changes in Figures 7 and 9 that
the intensity of high-temperature heat wave disasters was positively correlated with the
urbanization level in the region, and the higher the urbanization level (e.g., main urban
area, Wanzhou district, etc.), the more intense the impact of high-temperature heat wave
disasters. Related research has also shown that urbanization factors such as an urban
lake area, high-rise high-density urban form, and the percentage of urban ecological land
(UEL) can lead to an enhanced UHI effect and thus exacerbate high-temperature heat
waves [46,47]. Appropriate urban form planning can improve urban climate resilience [48],
thus contributing to the mitigation of heat waves [49]. This indicates the importance of
urbanization factors for heat wave mitigation.
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4. Conclusions and Implications

Through statistical analysis of daily maximum temperatures at 12 meteorological
stations in Chongqing from 1959 to 2020, we summarized the characteristics of the spatial
and temporal distribution of the FHW, NHD, and IHW in Chongqing and the influencing
factors. Initially, the temporal change pattern and spatial distribution differences of high-
temperature heat waves in Chongqing were revealed. Moreover, we made some judgments
on the future development trend of high-temperature heat waves based on the research
results. The main conclusions are as follows.

(1) The temporal trends of the FHW, NHD, and IHW in Chongqing from 1959 to
2020 were relatively consistent, with an overall increasing trend and a local trend of first
decreasing and then increasing. In particular, the decreasing trend of FHW, NHD, and
IHW in Chongqing was most obvious in the 1980s. After 2010, these three data increased
significantly again. The inflection point for sudden changes in heat wave disasters in
Chongqing occurred near 2009. The ARIMA time series model prediction results showed
that the heat waves in Chongqing will continue to show a significant upward trend after
2020, and the risk of heat waves in Chongqing is very serious.

(2) The spatial distribution of high-temperature heat wave disasters in Chongqing
from 1959 to 2020 varied significantly. Regions with the most severe heat wave disasters
are located in central and southwestern Chongqing (the main urban area and Wanzhou,
Fengdu, Qijiang, and other districts and counties), while regions least affected by heat
waves are located in southeastern Chongqing (Youyang, Qianjiang, and other districts and
counties), where the FHW, NHD, and IHW are much lower than those of other regions.

(3) In Chongqing from 1959 to 2020s the level of high-temperature heat wave disasters
increased significantly, and the impact area was expanded. Up to the decade and twenties
of the 21st century, the area affected by high-grade and high-intensity heat wave disasters
significantly increased. Meanwhile, the center of high-temperature heat waves also shifted
from Fengdu and Qijiang in the south-central part of the 1960s and 1970s to Wanzhou and
the surrounding areas in the northeast where urban development was faster.

(4) Spatial and temporal characteristics and trends of high-temperature heat waves in
Chongqing are influenced by regional natural factors such as global atmospheric circulation
changes, topography, wind speed and direction, and are closely related to urban artificial
factors such as urban space structure, subsurface types, and urbanization levels.

High-temperature heat waves are one of the sudden disasters faced by the global
community, presenting an increasingly serious trend. On one hand, it is necessary to
control the scale of cities, organize urban structures and ventilation corridors, reduce hard
surfaces, and increase greenery to reduce the aggravating effect of concrete, asphalt, and
other artificial surfaces on heat waves. On the other hand, it is necessary to establish a
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complete risk warning system, suitable disaster shelter planning, and a multilevel response
mechanism. Appropriate urban planning strategies are particularly important for urban
resilience and climate adaptation. In addition, a response strategy needs to be built for heat
wave disasters for both prevention and control planning and emergency warning.

At present, the exploration of heat wave prevention, control, and management is still
in its initial stage, and there is still a long way to go from theoretical research to strategy
practice. In terms of research scale, this paper selects representative meteorological station
data and mainly studies from the macro-regional level, while the data at the neighborhood
level, which is directly related to urban residents, is still to be explored. The research and
simulation of urban microclimate level data can help explore the impact of heat waves on
buildings and the human body. In terms of an assessment system, a riskiness framework
for heat wave risk assessment has been proposed in a related study. Subsequent studies will
propose risk assessment factors for heat waves based on spatial and temporal characteristics
analysis and establish a risk assessment system to provide a basis for developing more
accurate and effective countermeasures.
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IPCC Intergovernmental Panel on Climate Change
PET Physiological Equivalent Temperature
IHW Intensity of Heat Waves
NHD Number of Heat Wave Days
FHW Frequency of Heat Waves
RCMs Regional Climate Models
UHI Urban Heat Island
CLC Coastal Low Cloudiness
LST Land Surface Temperature
VIIRS Visible Infrared Imaging Radiometer Suite
DMSP Defense Meteorological Satellite Program
EAHT Effective Accumulated High Temperature
ARIMA Autoregressive Integrated Moving Average
ACF Autocorrelation Figure
PACF Partial Autocorrelation Figure
USR Urban Surface Roughness
UEL Urban Ecological Land
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