Measurements of Particulate Matter from Electronic and Conventional Cigarettes: A Comparative Analysis of Methods
Abstract
:1. Introduction
1.1. OPC Principle of Operation
1.2. OPC Calibration for Output as Number of Particles
1.3. OPC Calibration for Output in Mass
2. Materials and Methods
2.1. Sampling Site
2.2. Evaluation of OPCs to Measure EC Second-Hand Aerosol (ECSHA) Mass
2.2.1. Instruments
2.2.2. Calibration Procedure
- (a)
- If the OPC is equipped with sample automatic heat and RH % control, it should be set at the same RH % as the BAM for accurate calibration. However, in the case of the presence of volatile or semi-volatile elements in the PM, there may be errors in the k factors because they evaporate on both instruments.
- (b)
- If the OPC is not equipped with heaters or RH sensors, calibration with the BAM must be performed by measuring the environmental RH with an adequate RH sensor and applying mathematical Equation (1), an empirical adjustment equation derived from the experimental data of Laulainen [47], which fits well with data from several studies [48], and then compared with the reference instrument measurements. However, it must be considered that the RH interference becomes extremely high when it increases above 80/85% (see Figures S1 and S2 and Table S1 in SI—Supplementary Information), causing unacceptable errors in the mathematical interference correction, mainly because of uncertainties in the measurements at these high RH levels. If the OPC must be used when the RH is above 80/85%, sample dryers or heaters become compulsory.
- PMc = PM compensated for RH;
- PMm = OPC PM hourly average measured values;
- a = 1.0, as reported by Chakrabarti et al. [48];
- b = 0.25, as reported by Chakrabarti et al. [48];
- RH = RH in the 0–0.99 range, corresponding to 0–99% or RH/100.
- k = density k factor;
- PMr = BAM-1020 PM hourly average reference values;
- PMm = OPC PM hourly average measured values.
- (a)
- Comparison of OPC time-integrated mass measurements with the mass of PM accumulated on a pre-weighed filter, following the procedures according to BS EN 12341:2014.
- (b)
- OPC real-time measurement comparison with quasi-real-time measurements by an automatic density equivalent method.
2.2.3. Evaluation of Gravimetric Calibration of OPCs
- PM2.5 is the mass concentration in μg/m3;
- x is PNC > 0.5 minus PNC > 2.5 μm per ft3 measured by the Dylos device;
- a, b, c and k are coefficients to be determined after calibration in CC SHS with the BAM-1020.
2.3. Evaluation of OPCs to Measure ECSHA in Number of Particles
Instruments
- -
- Portable CPC model TSI 3007 measuring PM in counts/cm3 from 10 to 1000 nanometers; concentration accuracy +/− 20%;
- -
- Bench-top Metone Instruments Inc. model 212-2 Profiler (OPC) measuring PM in counts/L in 8 channels programmed as: >0.3, >0.5, >0.7, >1.0, >2.5, >3.0, >5.0 and >10.0 µm; programmable sampling time and equipped with heater for automatic RH % control; and concentration accuracy +/− 10%.
2.4. Statistical Procedures
3. Results
3.1. Measurements in Mass
3.2. Measurements in Number of Particles
3.2.1. ECSHA Using “Elips C” ECs Measured in counts/cm3: Model TSI 3007 with 2 min Sampling Time
3.2.2. ECSHA Using “Just Fog” ECs Measured in counts/L: Model Profiler 212-2 with 10 s Sampling Time
3.2.3. ECSHA Using “JUUL” ECs Measured in counts/L: Model Profiler 212-2 with 10 s Sampling Time
4. Discussion
4.1. Comments on Mass Measurements
4.2. Comments on Particle Number Measurements
- (a)
- No need to spend time on relatively complex calibration procedures to find the correct density k factor; normally, the accuracy is +/− 10% to calibrate aerosol (polystyrene latex spheres (PSLs));
- (b)
- The possibility of establishing PM size profiles if multiple-channel OPCs are used. With these instruments, it is possible to compare PM size profiles before (the background), during and after the EC use phase.
- (a)
- The extreme tendency of the aerosol clouds emitted by users of e-cig to evaporate;
- (b)
- The impossibility of finding the proper density k factor to apply to the OPCs if the measurements are in mass.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Y.; Cummins, S.E.; Zhu, S.H. Use of electronic cigarettes in smoke-free environments. Tob. Control 2017, 26, e19–e22. [Google Scholar] [CrossRef] [PubMed]
- Bauld, L.; McNeill, A.; Hajek, P.; Britton, J.; Dockrell, M. E-cigarette use in public places: Striking the right balance. Tob. Control 2017, 26, e5–e6. [Google Scholar] [CrossRef] [PubMed]
- Floyd, E.L.; Queimad, L.; Wang, J.; Regens, J.L.; Johnson, D.L. Electronic cigarette power affects count concentration and particle size distribution of use of e-cigs aerosol. PLoS ONE 2018, 13, e0210147. [Google Scholar] [CrossRef]
- Palmisani, J.; Di Gilio, A.; Palmieri, L.; Abenavoli, C.; Famele, M.; Draisci, R.; de Gennaro, G. Evaluation of Second-Hand Exposure to Electronic Cigarette Use of e-cigs under a Real Scenario: Measurements of Ultrafine Particle Number Concentration and Size Distribution and Comparison with Traditional Tobacco Smoke. Toxics 2019, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Czogala, J.; Goniewicz, M.L.; Fidelus, B.; Zielinska-Danch, W.; Travers, M.J.; Sobczak, A. Secondhand exposure to vapors from electronic cigarettes. Nicotine Tob. Res. 2014, 16, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Tigova, O.; Amalia, B.; Castellano, Y.; Fu, M.; Nogueira, S.O.; Kyriakos, C.N.; Mons, U.; Trofor, A.C.; Zatoński, W.A.; Przewoźniak, K.; et al. Secondhand exposure to e-cigarette aerosols among smokers: A cross-sectional study in six European countries of the EUREST-PLUS ITC Europe Surveys. Tob. Induc. Dis. 2019, 16, A11. [Google Scholar] [CrossRef]
- Li, L.; Nguyen, C.; Lin, Y.; Guo, Y.; Abou Fadel, N.; Zhu, Y. Impacts of electronic cigarettes usage on air quality of vape shops and their nearby areas. Sci. Total Environ. 2021, 760, 143423. [Google Scholar] [CrossRef]
- Colard, S.; O’Connell, G.; Verron, T.; Cahours, X.; Pritchard, J.D. Electronic cigarettes and indoor air quality: A simple approach to modeling potential bystander exposures to nicotine. Int. J. Environ. Res. Public Health 2014, 12, 282–299. [Google Scholar] [CrossRef]
- Kuga, K.; Ito, K.; Chen, W.; Wang, P.; Kumagai, K. A numerical investigation of the potential effects of e-cigarette smoking on local tissue dosimetry and the deterioration of indoor air quality. Indoor Air 2020, 30, 1018–1038. [Google Scholar] [CrossRef]
- Amalia, B.; Fu, M.; Tigova, O.; Ballbè, M.; Castellano, Y.; Semple, S.; Clancy, L.; Vardavas, C.; López, M.J.; Cortés, N.; et al. Environmental and individual exposure to secondhand aerosol of electronic cigarettes in confined spaces: Results from the TackSHS Project. Indoor Air 2021, 31, 1601–1613. [Google Scholar] [CrossRef]
- Amalia, B.; Liu, X.; Lugo, A.; Fu, M.; Odone, A.; van den Brandt, P.A.; Semple, S.; Clancy, L.; Soriano, J.B.; Fernández, E.; et al. Exposure to secondhand aerosol of electronic cigarettes in indoor settings in 12 European countries: Data from the TackSHS survey. Tob. Control 2021, 30, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Giovenco, D.P.; Delnevo, C.; Khlystov, A.; Samburova, V.; Meng, Q. Indoor Air Quality and Passive E-cigarette Aerosol Exposures in Vape-Shops. Nicotine Tob. Res. 2020, 22, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Zainol Abidin, N.; Zainal Abidin, E.; Zulkifli, A.; Karuppiah, K.; Syed Ismail, S.N.; Amer Nordin, A.S. Electronic cigarettes and indoor air quality: A review of studies using human volunteers. Rev. Environ. Health 2017, 32, 235–244. [Google Scholar] [CrossRef]
- Chen, R.; Aherrera, A.; Isichei, C.; Olmedo, P.; Jarmul, S.; Cohen, J.E.; Navas-Acien, A.; Rule, A.M. Assessment of indoor air quality at an electronic cigarette (Use of e-cigs) convention. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Schober, W.; Szendrei, K.; Matzen, W.; Osiander-Fuchs, H.; Heitmann, D.; Schettgen, T.; Jörres, R.A.; Fromme, H. Use of electronic cigarettes (e-cigarettes) impairs indoor air quality and increases FeNO levels of e-cigarette consumers. Int. J. Hyg. Environ. Health 2013, 217, 628–637. [Google Scholar] [CrossRef]
- Marcham, C.L.; Springston, J.P. Electronic cigarettes in the indoor environment. Rev. Environ. Health 2019, 34, 105–124. [Google Scholar] [CrossRef]
- Pisinger, C.; Døssing, M. A systematic review of health effects of electronic cigarettes. Prev. Med. 2014, 69, 248–260. [Google Scholar] [CrossRef]
- Papaefstathiou, E.; Stylianou, M.; Agapiou, A. Main and side stream effects of electronic cigarettes. J. Environ. Manag. 2019, 238, 10–17. [Google Scholar] [CrossRef]
- Visser, W.F.; Klerx, W.N.; Cremers Hans, W.J.M.; Ramlal, R.; Schwillens, P.L.; Talhout, R. The Health Risks of Electronic Cigarette Use to Bystanders. Int. J. Environ. Res. Public Health 2019, 16, 1525. [Google Scholar] [CrossRef]
- Callahan-Lyon, P. Electronic cigarettes: Human health effects. Tob. Control 2014, 23 (Suppl. 2), ii36–ii40. [Google Scholar] [CrossRef] [Green Version]
- Peterson, L.A.; Hecht, S.S. Tobacco, e-cigarettes, and child health. Curr. Opin. Pediatr. 2017, 29, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Sousan, S.; Koehler, K.; Thomas, G.; Park, J.H.; Hillman, M.; Halterman, A.; Peters, T.M. Inter-comparison of low-cost sensors for measuring the mass concentration of occupational aerosols. Aerosol Sci. Technol. 2016, 50, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Melstrom, P.; Koszowski, B.; Thanner, M.H.; Hoh, E.; King, B.; Bunnell, R.; McAfee, T. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes. Nicotine Tob. Res. 2017, 19, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; Ballbè, M.; Sureda, X.; Fu, M.; Saltó, E.; Martínez-Sánchez, J.M. Particulate Matter from Electronic Cigarettes and Conventional Cigarettes: A Systematic Review and Observational Study. Curr. Environ. Health Rep. 2015, 2, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Fernández, E.; López, M.J.; Gallus, S.; Semple, S.; Clancy, L.; Panagiotis, B.; Ruprecht, A.A.; Gorini, G.; Angel-Lopez-Nicolas, A.; Radu-Loghin, C.; et al. Tackling second-hand exposure to tobacco smoke and aerosols of electronic cigarettes: The TackSHS project protocol. Gac. Sanit. 2020, 34, 77–82. [Google Scholar] [CrossRef]
- Li, J.; Mattewal, S.K.; Patel, S.; Biswas, P. Evaluation of Nine Low-cost-sensor-based Particulate Matter Monitors. Aerosol Air Qual Res. 2020, 20, 254–270. [Google Scholar] [CrossRef]
- Giordano, M.R.; Malings, C.; Pandis, S.N.; Presto, A.A.; McNeill, V.F.; Westervelt, D.M.; Beekmann, M.; Subramanian, R. From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Sci. 2021, 158, e105833. [Google Scholar] [CrossRef]
- Gameli Hodoli, C.; Coulon, F.; Mead, M.I. Applicability of factory calibrated optical particle counters for high-density air quality monitoring networks in Ghana. Heliyon 2020, 6, e04206. [Google Scholar] [CrossRef]
- Model 212 PROFILER. Operation Manual. Available online: https://www.ecotech.com/wp-content/uploads/2015/03/212_operationmanual.pdf (accessed on 8 August 2022).
- Katrib, Y.; Martin, S.T.; Rudich, Y.; Davidovits, P.; Jayne, J.T.; Worsnop, D.R. Density changes of aerosol particles as a result of chemical reaction. Atmos. Chem. Phys. 2005, 5, 275–291. [Google Scholar] [CrossRef]
- Logue, J.M.; Sleiman, M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Benowitz, N.L.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Assessing Users of e-cigs’ Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts. Environ. Sci. Technol. 2017, 51, 9271–9279. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.; Naeher, L.P.; Yu, X.; Sosnoff, C.; Wang, L.; Rathbun, S.L.; De Jesús, V.R.; Xia, B.; Holder, C.; Muilenburg, J.L.; et al. A biomonitoring assessment of secondhand exposures to electronic cigarette emissions. Int. J. Hyg. Environ. Health 2019, 222, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Khachatoorian, C.; Peyton, J., III; Benowitz, N.L.; Talbot, P. Electronic cigarette chemicals transfer from a vape shop to a nearby business in a multiple-tenant retail building. Tob. Control 2019, 28, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Malm, W.C.; Day, D.E.; Kreidenweis, S.M.; Collett, J.L.; Lee, T. Humidity dependent optical properties of fine particles during the Big Bend Regional Aerosol and Visibility Observational Study (BRAVO). J. Geophys. Res. Atmos. 2003, 108, D9. [Google Scholar] [CrossRef]
- Ruprecht, A.A.; De Marco, C.; Boffi, R.; Mazza, R.; Lopez, M.J.; MoECSHAmmer, H.; Dautzenberg, B.; Clancy, L.; Precioso, J.; Invernizzi, G. Mass calibration and Relative Humidity compensation requirements for optical portable particulate matter monitors: The IMPASHS (Impact of smoke-free policies in EU Member States) WP2 preliminary results. Epidemiology 2011, 22, s206. [Google Scholar] [CrossRef]
- Ruprecht, A.A.; Borgini, A.; De Marco, C.; Veronese, C.; Mazza, R.; Tittarelli, A.; Fraguglia, B.; Bertoldi, M.; Contiero, P.; Boffi, R. Tack SHS: WP7, WP2 and WP4. TackSHS Annual Consortium Meeting October 5th–6th, Playa de Palma, Mallorca WP4. 2017. Available online: https://www.researchgate.net/publication/320298720_Tack_SHS_WP7_WP2_and_WP4 (accessed on 8 August 2022).
- Soule, E.K.; Maloney, S.F.; Spindle, T.R.; Rudy, A.K.; Hiler, M.M.; Cobb, C.O. Electronic cigarette use and indoor air quality in a natural setting. Tob. Control 2017, 26, 109–112. [Google Scholar] [CrossRef]
- Protano, C.; Manigrasso, M.; Cammalleri, V.; Biondi Zoccai, G.; Frati, G.; Avino, P.; Vitali, M. Impact of Electronic Alternatives to Tobacco Cigarettes on Indoor Air Particular Matter Levels. Int. J. Environ. Res. Public Health 2020, 17, 2947. [Google Scholar] [CrossRef]
- Peruzzi, M.; Cavarretta, E.; Frati, G.; Carnevale, R.; Miraldi, F.; Biondi-Zoccai, G.; Sciarretta, S.; Versaci, F.; Cammalleri, V.; Avino, P.; et al. Comparative Indoor Pollution from Glo, Iqos, and Juul, Using Traditional Combustion Cigarettes as Benchmark: Evidence from the Randomized SUR-VAPES AIR Trial. Int. J. Environ. Res. Public Health 2020, 17, 6029. [Google Scholar] [CrossRef]
- Semple, S.; Apsley, A.; Maccalman, L. An inexpensive particle monitor for smoker behaviour modification in homes. Tob. Control 2013, 22, 295–298. [Google Scholar] [CrossRef]
- Semple, S.; Engku Ibrahim, A.; Apsley, A.; Steiner, M.; Turner, S. Using a new, low-cost air quality sensor to quantify second-hand smoke (SHS) levels in homes. Tob. Control 2013, 24, 153–158. [Google Scholar] [CrossRef]
- Day, D.E.; Malm, W.C. Aerosol light scattering measurements as a function of relative humidity: A comparison between measurements made at three different sites. Atmos. Environ. 2001, 35, 5169–5176. [Google Scholar] [CrossRef]
- Lowenthal, D.H.; Rogers, C.F.; Saxena, P.; Watson, J.G.; Chow, J.C. Sensitivity of estimated light extinction coefficients to model assumptions and measurement errors. Atmos. Environ. 1995, 29, 751–766. [Google Scholar] [CrossRef]
- Manikonda, A.; Zíková, N.; Hopke, P.K.; Ferro, A.R. Laboratory assessment of low-cost PM monitors. J. Aerosol Sci. 2016, 102, 29–40. [Google Scholar] [CrossRef]
- Dobson, R.; Semple, S. “How do you know those particles are from cigarettes?”: An algorithm to help differentiate second-hand tobacco smoke from background sources of household fine particulate matter. Environ. Res. 2018, 166, 344–347. [Google Scholar] [CrossRef] [PubMed]
- BAM 1020 Particulate Monitor Operation Manual. Available online: https://metone.com/wp-content/uploads/2022/02/BAM-1020-9800-Manual-Rev-AA.pdf (accessed on 8 August 2022).
- Laulainen, N.S. Summary of Conclusions and Recommendations from a Visibility Science Workshop; United States Department of Energy: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Fine, P.M.; Delfino, R.; Sioutas, C. Performance evaluation of the active-flow personal DataRAM PM2.5 mass (µg/m3) monitor (Thermo Anderson pDR-1200) designed for continuous personal exposure measurements. Atmos. Environ. 2004, 38, 3329–3340. [Google Scholar] [CrossRef]
- Lopez, M.J.; Fernandez, E.; Gorini, G.; MoECSHAmmer, H.; Polanska, K.; Clancy, L.; Dautzenberg, B.; Delrieu, A.; Invernizzi, G.; Munoz, G.; et al. Exposure to Secondhand Smoke in Terraces and Other Outdoor Areas of Hospitality Venues in Eight European Countries. PLoS ONE 2012, 7, e42130. [Google Scholar] [CrossRef]
- Ruprecht, A.A.; De Marco, C.; Saffari, A.; Pozzi, P.; Mazza, R.; Veronese, C.; Angellotti, G.; Munarini, E.; Ogliari, A.C.; Westerdahl, D.; et al. Environmental pollution and emission factors of electronic cigarettes, heat-not-burn tobacco products, and conventional cigarettes. Aerosol Sci. Technol. 2017, 51, 674–684. [Google Scholar] [CrossRef]
- Zhao, D.; Aravindakshan, A.; Hilpert, M.; Olmedo, P.; Rule, A.M.; Navas-Acien, A.; Aherrera, A. Metal/Metalloid Levels in Electronic Cigarette Liquids, Aerosols, and Human Biosamples: A Systematic Review. Environ. Health Perspect. 2020, 128, 36001. [Google Scholar] [CrossRef]
- Ooi, B.G.; Dutta, D.; Kazipeta, K.; Chong, N.S. Influence of the E-Cigarette Emission Profile by the Ratio of Glycerol to Propylene Glycol in E-Liquid Composition. ACS Omega 2019, 4, 13338–13348. [Google Scholar] [CrossRef]
- Guo, P.; He, Z.; Jalaludin, B.; Knibbs, L.D.; Leskinen, A.; Roponen, M.; Komppula, M.; Jalava, P.; Hu, L.; Chen, G.; et al. Short-Term Effects of Particle Size and Constituents on Blood Pressure in Healthy Young Adults in Guangzhou, China. J. Am. Heart Assoc. 2021, 10, e019063. [Google Scholar] [CrossRef]
- Strak, M.; Janssen, N.A.; Godri, K.J.; Gosens, I.; Mudway, I.S.; Cassee, F.R.; Lebret, E.; Kelly, F.J.; Harrison, R.M.; Brunekreef, B.; et al. Respiratory health effects of airborne particulate matter: The role of particlesize, composition, and oxidative potential—The RAPTES project. Environ. Health Perspect. 2012, 120, 1183–1189. [Google Scholar] [CrossRef]
- Soneja, S.; Chen, C.; Tielsch, J.M.; Katz, J.; Scott, L.; Zeger, S.L.; Checkley, W.; Curriero, F.C.; Breysse, P.N. Humidity and Gravimetric Equivalency Adjustments for Nephelometer-Based Particulate Matter Measurements of Emissions from Solid Biomass Fuel Use in Cookstoves. Int. J. Environ. Res. Public Health 2014, 11, 6400–6416. [Google Scholar] [CrossRef] [PubMed]
- Schripp, T.; Markewitz, D.; Uhde, E.; Salthammer, T. Does e-cigarette consumption cause passive vaping? Indoor Air 2013, 23, 25–31. [Google Scholar] [CrossRef] [PubMed]
Model | Technical Features | Measurements |
---|---|---|
Dylos DC 1700 | OPC (Optical Particle Counter) | Particles/ft3 of sizes between >0.5 and >2.5 μm |
Air Visual | OPC (Optical Particle Counter) | PM1, PM2.5, PM10, temperature and relative humidity |
AirBeam | OPC (Optical Particle Counter) | PM1, PM2.5, PM10, temperature and relative humidity |
Aerocet 531S | Full-featured OPC (Optical Particle Counter) | PM1, PM2.5, PM4.0, PM7.0, PM10 and TSP |
BAM-1020 | Beta attenuation mass monitor | PM2.5 and PM10 |
Test Number | 1 | 2 | 3 | 4 | 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
µg/m3 | BAM 1020 | Dylos | BAM 1020 | Aerocet 531 | BAM 1020 | Airbeam Just Fog | BAM 1020 | Airbeam JUUL | BAM 1020 | Airvisual JUUL |
Average bckg before e-cig | 4.0 | 2.2 | 15.1 | 15.8 | 5.0 | 9.1 | 5.0 | 5.6 | 9.3 | 5.2 |
Average during e-cig | 6.3 | 18.3 | 17.2 | 30.8 | 12.0 | 92.6 | 12.0 | 11.0 | 10.0 | 87.1 |
Average bckg after e-cig | 4.8 | 1.6 | 16.7 | 22.8 | 11.0 | 10.5 | 13.0 | 8.0 | 9.6 | 5.3 |
Median during e-cig | 5.5 | 23.0 | 17.5 | 35.5 | 12.0 | 97.3 | 12.0 | 29.5 | 10.0 | 691.2 |
Max during e-cig | 8.0 | 38.7 | 19.0 | 55.1 | 12.0 | 188.4 | 12.0 | 55.0 | 10.0 | 1377.4 |
Min during e-cig | 3.0 | 7.2 | 16.0 | 16.0 | 12.0 | 6.1 | 12.0 | 3.9 | 10.0 | 5.0 |
Counts/L | 0.3 | 0.5 | 0.7 | 1.0 | 2.5 | 3.0 | 5.0 | 10.0 |
---|---|---|---|---|---|---|---|---|
Average bckg before ECs | 27,045 | 2547 | 1034 | 657 | 192 | 101 | 27 | 6 |
Average during ECs | 245,677 | 145,324 | 78,256 | 41,618 | 1947 | 306 | 28 | 7 |
Average bckg after e cigs | 39,063 | 3132 | 1211 | 757 | 217 | 105 | 29 | 6 |
Median during EC | 484,034 | 309,591 | 198,533 | 133,513 | 8082 | 1317 | 36 | 12 |
Max during ECs | 911,826 | 597,365 | 387,585 | 262,971 | 15,892 | 2568 | 66 | 24 |
Min during ECs | 56,241 | 21,817 | 9480 | 4054 | 271 | 66 | 6 | 0 |
Counts/L | 0.3 | 0.5 | 0.7 | 1.0 | 2.5 | 3.0 | 5.0 | 10.0 |
---|---|---|---|---|---|---|---|---|
Average bckg before ECs | 25,955 | 2005 | 714 | 436 | 119 | 62 | 14 | 2 |
Average during Ecs | 107,984 | 38,608 | 14,542 | 6649 | 361 | 118 | 26 | 4 |
Average bckg after e cigs | 26,489 | 1916 | 704 | 454 | 138 | 74 | 17 | 2 |
Median during EC | 126,259 | 45,444 | 16,304 | 6954 | 355 | 120 | 27 | 6 |
Max during Ecs | 204,102 | 79,904 | 27,958 | 11,543 | 499 | 168 | 48 | 12 |
Min during Ecs | 48,415 | 10,983 | 4650 | 2364 | 211 | 72 | 6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruprecht, A.; Borgini, A.; Veronese, C.; Tittarelli, A.; Boffi, R.; Bertoldi, M.; Fernández, E.; De Marco, C.; TackSHS Project Investigators. Measurements of Particulate Matter from Electronic and Conventional Cigarettes: A Comparative Analysis of Methods. Atmosphere 2022, 13, 1393. https://doi.org/10.3390/atmos13091393
Ruprecht A, Borgini A, Veronese C, Tittarelli A, Boffi R, Bertoldi M, Fernández E, De Marco C, TackSHS Project Investigators. Measurements of Particulate Matter from Electronic and Conventional Cigarettes: A Comparative Analysis of Methods. Atmosphere. 2022; 13(9):1393. https://doi.org/10.3390/atmos13091393
Chicago/Turabian StyleRuprecht, Ario, Alessandro Borgini, Chiara Veronese, Andrea Tittarelli, Roberto Boffi, Martina Bertoldi, Esteve Fernández, Cinzia De Marco, and TackSHS Project Investigators. 2022. "Measurements of Particulate Matter from Electronic and Conventional Cigarettes: A Comparative Analysis of Methods" Atmosphere 13, no. 9: 1393. https://doi.org/10.3390/atmos13091393
APA StyleRuprecht, A., Borgini, A., Veronese, C., Tittarelli, A., Boffi, R., Bertoldi, M., Fernández, E., De Marco, C., & TackSHS Project Investigators. (2022). Measurements of Particulate Matter from Electronic and Conventional Cigarettes: A Comparative Analysis of Methods. Atmosphere, 13(9), 1393. https://doi.org/10.3390/atmos13091393