Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia
Abstract
:1. Introduction
2. Methodology
2.1. Data Source
2.2. Feasibility of Recording Stations
2.3. Evaluation of the Recorded PM2.5 Data
2.4. Elimination of Outliers
2.5. Imputation of Missing Records
2.6. Chi2 Analysis
2.7. Correlation
2.8. Interpolation
2.9. BenMap Analysis
3. Results and Discussion
3.1. Feasibility of Recording Stations
3.2. Evaluation of the Recorded PM2.5 data
3.3. Elimination of Outliers
3.4. Imputation of Missing Data
3.5. Chi2 Analysis
3.6. Correlations
3.7. Basic Statistics
3.8. Interpolation
3.9. Health Impact on Childhood Asthma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OCDE. Recomendación del Consejo de la OCDE Sobre Buenas Prácticas Estadísticas; 2015. [Google Scholar]
- Heads of the National Statistical Institutes. European Statistics For the National Statistical Authorities; Luxembourg, 2017. [Google Scholar] [CrossRef]
- Martini, F.M.S.; Hasenkopf, C.A.; Roberts, D.C. Statistical analysis of PM2.5 observations from diplomatic facilities in China. Atmos. Environ. 2015, 110, 174–185. [Google Scholar] [CrossRef]
- Iordache, Ş.; Dunea, D. Cross-spectrum analysis applied to air pollution time series from several urban areas of Romania. Environ. Eng. Manag. J. 2013, 12, 677–684. [Google Scholar] [CrossRef]
- Bathmanabhan, S.; Madanayak, S.N.S. Analysis and interpretation of particulate matter—PM10, PM2.5 and PM1 emissions from the heterogeneous traffic near an urban roadway. Atmos. Pollut. Res. 2010, 1, 184–194. [Google Scholar] [CrossRef]
- Broome, R.A.; Fann, N.; Navin, T.J.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Park, Y.; Lee, J. Assessment of temporal variation for the risk of particulate matters on asthma hospitalization. Environ. Res. 2017, 156, 542–550. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M. Outdoor Air Pollution. Our World in Data 2019. Available online: https://ourworldindata.org/outdoor-air-pollution (accessed on 14 May 2022).
- World Health Organization for the Western Pacific. Improving Data Quality: A Guide for Developing Countries; World Health Organization for the Western Pacific: Manila, Philippines, 2003; Volume 6, p. 74. ISBN 9290610506. [Google Scholar]
- Enders, C.K. Applied Missing Data Analysis; The Guilford Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Yunus, R.M.; Zubairi, Y.Z. A probability distribution-based approach to impute missing values in hourly PM10 concentration. Integr. Catchment Assess. Manag. (iCAM) 2019, 10, 6. [Google Scholar]
- Paulhus, J.L.H.; Köhler, M.A. Interpolation of missing precipitation records. Mon. Weather Rev. 1952, 80, 129–133. [Google Scholar] [CrossRef]
- Iancu, I.; Canureci, G.; Iancu, E.; Vinatoru, M.; Street, P.R.; Street, D. Spectral Analysis of the Heart Sounds for Medical Diagnosis. In Proceedings of the 4th WSEAS/IASME International Conference on DYNAMICAL SYSTEMS and CONTROL, Corfu, Greece, 26–28 October 2008; Volume 1, pp. 61–65. [Google Scholar]
- Wolff, H. Spectral analysis of clinical signals: An interface between medical statisticians and medical engineers. Stat. Methods Med. Res. 1996, 5, 51–66. [Google Scholar]
- Tchepel, O.; Borrego, C. Frequency analysis of air quality time series for traffic related pollutants. J. Environ. Monit. 2010, 12, 544–550. [Google Scholar] [CrossRef]
- Dutton, S.J.; Rajagopalan, B.; Vedal, S.; Hannigan, M.P. Temporal patterns in daily measurements of inorganic and organic speciated PM2.5 in Denver. Atmos. Environ. 2010, 44, 987–998. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Sánchez, A.; Martín-Chivelet, J. Revisión de la estratigrafía del δ 18 O en sondeos de hielo de glaciares de los Andes Centrales: Implicaciones para la variabilidad climática del Holoceno. Geotemas 2016, 16, 565–568. [Google Scholar]
- Niklasson, U. Spectral Analysis of the Heart Rate Variability A Methodological Study av. Umea Univ. Med. Diss. 1993, 371, 59. [Google Scholar]
- Hou, F.H.; Ye, J.Q.; Chen, Z.G.; Cheng, Z.Y. Advances on enzymes and enzyme inhibitors research based on microfluidic devices. Yaoxue Xuebao 2010, 45, 694–698. [Google Scholar] [CrossRef]
- Lin, Y.; Chu, H.; Wu, C.; Chang, T. Hotspot Analysis of Spatial Environmental Pollutants Using Kernel Density Estimation and Geostatistical Techniques. Int. J. Environ. Res. Public Health 2011, 8, 75–88. [Google Scholar] [CrossRef] [PubMed]
- López-Aparicio, S.; Vogt, M.; Schneider, P.; Kahila-Tani, M.; Broberg, A. Public participation GIS for improving wood burning emissions from residential heating and urban environmental management. J. Environ. Manag. 2017, 191, 179–188. [Google Scholar] [CrossRef]
- Silverman, R.A.; Ito, K. Age-related association of fine particles and ozone with severe acute asthma in New York City. J. Allergy Clin. Immunol. 2010, 125, 367–373.e5. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Zhu, D.; Peng, D.; Zhao, Y. Air pollution and asthma attacks in children: A case–crossover analysis in the city of Chongqing, China. Environ. Pollut. 2017, 220, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Malig, B.J.; Green, S.; Basu, R.; Broadwin, R. Coarse particles and respiratory emergency department visits in California. Am. J. Epidemiol. 2013, 178, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xiang, X.; Juan, J.; Sun, K.; Song, J.; Cao, Y.; Hu, Y. Fine particulate air pollution and hospital visits for asthma in Beijing, China. Environ. Pollut. 2017, 230, 227–233. [Google Scholar] [CrossRef]
- Barnett, S.B.L.; Nurmagambetov, T.A. Costs of asthma in the United States: 2002-2007. J. Allergy Clin. Immunol. 2011, 127, 145–152. [Google Scholar] [CrossRef]
- Caraballo, L.; Zakzuk, J.; Lee, B.W.; Acevedo, N.; Soh, J.Y.; Sánchez-Borges, M.; Hossny, E.; García, E.; Rosario, N.; Ansotegui, I.; et al. Particularities of allergy in the Tropics. World Allergy Organ. J. 2016, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Luis, S.; Hoyos, M.; Navarro, J.O. Informe Consolidado Año 2016; EPA-Cartagena: Cartagena de Indias, Colombia, 2016.
- Hoyos, S.L.M.; Pájaro, N.C.; Navarro, J.O.; López, E.L. Calidad del Aire de Cartagena 2016; EPA-Cartagena: Cartagena de Indias, Colombia, 2016.
- ArcMap. How Kernel Density model works? ArcGis Desktop 2019. Available online: https://desktop.arcgis.com/es/arcmap/latest/tools/spatial-analyst-toolbox/how-kernel-density-works.htm (accessed on 14 May 2022).
- Vergne, M.; Berline, S.N.; Getzler, E. Heat Kernel and Dirac Operators; Springer: Berlin/Heidelberg, Germany, 1996; Volume 58, ISBN 978-3-540-53340-5. [Google Scholar]
- Searcy, J.K.; Hardison, C.H. Double-Mass Curves. WaterSupply Pap. 1960, 1541B, 31–66. Available online: http://udspace.udel.edu/handle/19716/1592 (accessed on 14 May 2022).
- World Meteorological Organization. Guide to Climatological Practices, Second Edition, 100th ed.; WMO: Geneva, Switzerland, 1983. [Google Scholar]
- Urrutia, J.A.; Palomino, R.; Salazar, H.D. Metodología para la imputación de datos faltantes en metereología. Sci. Tech. 2010, 17, 44–49. [Google Scholar]
- Gao, P.; Li, P.; Zhao, B.; Xu, R.; Zhao, G.; Sun, W.; Mu, X. Use of double mass curves in hydrologic benefit evaluations. Hydrol. Process. 2017, 31, 4639–4646. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2015; p. 10. Available online: http://www.rstudio.com/ (accessed on 14 May 2022).
- Medina, G.V. Determinación de la Correlación Entre PM2.5 y PM10 en el Distrito de San Isidro en Lima—Perú, 2016; Universidad Científica del Sur: Villa el Salvador, Peru, 2017. [Google Scholar]
- D’innocenzio, L.E.; Difilippo, F.; Lepore, P. PM10 and PM2.5 concentrations in Urban Air Size Fraction Distribution of Toxic Metals. Ann. Chim. 1998, 88, 281–289. [Google Scholar]
- Aldegunde, J.A.Á.; Álvarez, V.; Bolaños, E.Q.; Saba, M.; Atencio, C.H. Estimation of the Vehicle Emission Factor in Different Areas of Cartagena de Indias. Rev. Cienc. 2020, 23, 53–73. [Google Scholar] [CrossRef]
- Hammer, P.D.R.Ø.; David, A.T. Harper, Past: Paleontological Statistics Software Package For Education and Data Analysis. Paleaeontologia Electron. 2001, 4, 9. [Google Scholar]
- Polanco-Martínez, J.M. Estimación espectral de datos ambientales no equispaciados vía el periodograma suavizado de Lomb-Scargle. Una breve revisión. Analítika 2014, 8, 7–23. [Google Scholar]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Esri. ArcMap 10.5. ESRI; ESRI: Redlands, CA, USA, 2017. [Google Scholar]
- de Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput. Geosci. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application. Int. J. Environ. Res. Public Health 2016, 13, 749. [Google Scholar] [CrossRef] [PubMed]
- CIOH. Climatología Y Situaciones Sinópticas en Cartagena de Indias, Colombia; CIOH: Cartagena de Indias, Colombia, 2008. [Google Scholar]
- EPA. Benefits Mapping and Analysis Program (BenMAP). User Manual. 2022, 1, 545. [Google Scholar]
- Martenies, S.E.; Wilkins, D.; Batterman, S.A. Health impact metrics for air pollution management strategies. Environ. Int. 2015, 85, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Sacks, J.D.; Lloyd, J.M.; Zhu, Y.; Anderton, J.; Jang, C.J.; Hubbell, B.; Fann, N. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP–CE): A tool to estimate the health and economic benefits of reducing air pollution. Environ. Model. Softw. 2018, 104, 118–129. [Google Scholar] [CrossRef] [PubMed]
- IBM. IBM SPSS Advanced Statistics 24. Ibm 2016, 4, 118. [Google Scholar] [CrossRef]
- Norris, G.; Young Pong, S.N.; Koenig, J.Q.; Larson, T.v.; Sheppard, L.; Stout, J.W. An association between fine particles and asthma emergency department visits for children in Seattle. Environ. Health Perspect. 1999, 107, 489–493. [Google Scholar] [CrossRef]
- Meyers, A.D.; Bleecker, E.R.; Holloway, J.W.; Holgate, S.T. Asthma genetics and personalised medicine. Lancet Respir. Med. 2014, 2, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Willis-Owen, S.A.; Cookson, W.O.; Moffatt, M.F. The Genetics and Genomics of Asthma. Annu. Rev. Genom. Hum. Genet. 2018, 19, 223–246. [Google Scholar] [CrossRef]
- Ullemar, V.; Magnusson, P.; Lundholm, C.; Zettergren, A.; Melen, E.; Lichtenstein, P.; Almqvist, C. Heritability and confirmation of genetic association studies for childhood asthma in twins. Allergy 2015, 71, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Ober, C.; Yao, T.-C. The genetics of asthma and allergic disease: A 21st century perspective. Immunol. Rev. 2011, 242, 10–30. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.C.; Maheswaran, R.; Daly, M. Road-traffic pollution and asthma—using modelled exposure assessment for routine public health surveillance. Int. J. Health Geogr. 2004, 3, 24. [Google Scholar] [CrossRef] [PubMed]
- Ciccone, G.; Forastiere, F.; Agabiti, N.; Biggeri, A.; Bisanti, L.; Chellini, E.; Corbo, G.; Dell’Orco, V.; Dalmasso, P.; Volante, T.F.; et al. Road traffic and adverse respiratory effects in children. SIDRIA Collaborative Group. Occup. Environ. Med. 1998, 55, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Khalili, R.; Bartell, S.M.; Hu, X.; Liu, Y.; Chang, H.H.; Belanoff, C.; Strickland, M.J.; Vieira, V.M. Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: A case-crossover analysis. Environ. Health 2018, 17, 20. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.; Walters, S.; Griffiths, R.K. Hospital Admissions for Asthma in Preschool Children: Relationship to Major Roads in Birmingham, United Kingdom. Arch. Environ. Health Int. J. 1994, 49, 223–227. [Google Scholar] [CrossRef]
- Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. Asthmatic responses to airborne acid aerosols. Am. J. Public Health 1991, 81, 694–702. [Google Scholar] [CrossRef]
- Pope, C.A. Epidemiology of Fine Particulate Air Pollution and Human Health: Biologic Mechanisms and Who’s at Risk? Environ. Health Perspect. 2000, 108, 713. [Google Scholar] [CrossRef]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Chang, J.-H.; Lee, C.-L.; Huang, W.-C.; Hsu, Y.-P.; Liu, C.-T.; Jean, S.-S.; Huang, S.-K.; Hsu, C.-W. Differential time-lag effects of ambient PM2.5 and PM2.5-bound PAHs on asthma emergency department visits. Environ. Sci. Pollut. Res. 2020, 27, 43117–43124. [Google Scholar] [CrossRef]
- Wu, J.; Zhong, T.; Zhu, Y.; Ge, D.; Lin, X.; Li, Q. Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China. BMC Pediatr. 2019, 19, 194. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.C.; Vaidyanathan, A.; Flanders, W.D.; Qin, X.; Garbe, P. Outdoor PM2.5, Ambient Air Temperature, and Asthma Symptoms in the Past 14 Days among Adults with Active Asthma. Environ. Health Perspect. 2016, 124, 1882–1890. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-R.; Young, L.-H.; Hsu, H.-T.; Lin, M.-Y.; Chen, Y.-C.; Hwang, B.-F.; Tsai, P.-J. PM2.5 components and outpatient visits for asthma: A time-stratified case-crossover study in a suburban area. Environ. Pollut. 2017, 231, 1085–1092. [Google Scholar] [CrossRef]
- Rosenquist, N.A.; Metcalf, W.J.; Ryu, S.Y.; Rutledge, A.; Coppes, M.J.; Grzymski, J.J.; Strickland, M.J.; Darrow, L.A. Acute associations between PM2.5 and ozone concentrations and asthma exacerbations among patients with and without allergic comorbidities. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Pope, R.; Stanley, K.M.; Domsky, I.; Yip, F.; Nohre, L.; Mirabelli, M. The relationship of high PM2.5 days and subsequent asthma-related hospital encounters during the fireplace season in Phoenix, AZ, 2008–2012. Air Qual. Atmos. Health 2016, 10, 161–169. [Google Scholar] [CrossRef]
- Aldegunde, J.A.Á.; Fernández-Sánchez, A.; Saba, M.; Bolaños, E.Q.; Palenque, J.Ú. Analysis of PM 2.5 and Meteorological Variables Using Enhanced Geospatial Techniques in Developing Countries: A Case Study of Cartagena de Indias City (Colombia). Atmosphere 2022, 13, 506. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.J.; Liang, H.Y. The Impact of Meteorological Factors on PM2.5 Variations in Hong Kong. IOP Conf. Ser. Earth Environ. Sci. 2017, 78, 012003. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A.; Úbeda, J.; Tanarro, L.M.; Naranjo, N.; Álvarez, J.A.; Chancafé, J. Climate forcings and their influence in the Cordillera Blanca, Perú, deduced from spectral analysis techniques. In Proceedings of the 5th International Electronic Conference on Atmospheric Sciences, Online, 16–31 July 2022. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Pan, R.-H.; Chan, C.-K.; Wu, C.-Y.; Phan, D.-V.; Chan, C.-L. Application of a Time-Stratified Case-Crossover Design to Explore the Effects of Air Pollution and Season on Childhood Asthma Hospitalization in Cities of Differing Urban Patterns: Big Data Analytics of Government Open Data. Int. J. Environ. Res. Public Health 2018, 15, 647. [Google Scholar] [CrossRef]
- Davidson, K.; Hallberg, A.; McCubbin, D.; Hubbell, B. Analysis of PM2.5 Using the Environmental Benefits Mapping and Analysis Program (BenMAP). J. Toxicol. Environ. Health Part A 2007, 70, 332–346. [Google Scholar] [CrossRef]
Data | Organism | Period |
---|---|---|
Monthly Incidence | Ministry of Health of Colombia | 2014 to 2016 |
Suburbs delimitation | University of Cartagena | 2013 |
PM2.5 and PM10 | EPA-Cartagena | 2014 to 2017 |
Asthma variables | * I.I.R.C. | 2010 to 2016 |
Name | Code | Coordinate X (Decimal Degrees) | Coordinate Y (Decimal Degrees) | Measure |
---|---|---|---|---|
Cardique | GTC3 | 10.391716 | −75.525014 | PM2.5 |
La Bocana | GTC1 | 10.452916 | −75.50775 | PM10 |
Base Naval | GTC2 | 10.413333 | −75.549825 | PM2.5 and PM10 |
Zona Franca (Mamonal) | GTC4 | 10.32598 | −75.48929 | PM2.5 and PM10 |
Policía turística (Olaya) | GTCI5 | 10.405539 | −75.485317 | PM10 |
PM Station | First Value | Second Value | Third Value | Fourth Value |
---|---|---|---|---|
Mean of Stations | No outlier | No outlier | No outlier | No outlier |
Policía turística | 30.0 (Std. 2.73) | No outlier | No outlier | No outlier |
La Bocana | 46.2 (Std. 5.89) | 37.6 (Std. 5.36) | 35.5 (Std. 5.26) | No outlier |
Cardique | 42.5 (Std. 7.08) | No outlier | No outlier | No outlier |
Zona Franca | No outlier | No outlier | No outlier | No outlier |
Naval Base | 52.7 (Std. 8.70) | 48.0 (Std. 8.43) | 43.0 (Std. 8.19) | 41.5 (Std. 8.13) |
Date | Fine Particle Concentration (µg/m3) | |||||
---|---|---|---|---|---|---|
Year | Month | Policía Turística (Olaya) | La Bocana | Cardique | Zona Franca (Mamonal) | Naval Base |
2014 | January | 22.50 | 25.05 | 35.00 | 21.20 | 21.00 |
February | 22.00 | 23.60 | 32.50 | 30.40 | 31.50 | |
March | 22.60 | 23.70 | 42.50 | 34.90 | 24.80 | |
April | 23.00 | 21.60 | 30.50 | 34.70 | 27.40 | |
May | 30.00 | 25.60 | 39.45 | 31.70 | 32.90 | |
June | 25.00 | 21.60 | 28.90 | 40.20 | 30.00 | |
July | 24.65 | 25.40 | 23.20 | 40.10 | 28.30 | |
August | 18.50 | 28.00 | 19.20 | 27.50 | 20.80 | |
September | 24.60 | 21.05 | 30.00 | 25.40 | 31.20 | |
October | 25.45 | 21.15 | 18.20 | 21.00 | 27.90 | |
November | 17.55 | 27.55 | 15.90 | 19.30 | 34.90 | |
December | 23.85 | 22.50 | 13.70 | 24.50 | 28.20 | |
2015 | January | 21.00 | 19.00 | 17.00 | 30.00 | 24.00 |
February | 22.00 | 19.00 | 18.00 | 49.00 | 27.00 | |
March | 19.00 | 20.00 | 19.00 | 46.00 | 20.00 | |
April | 19.00 | 18.00 | 24.00 | 48.00 | 35.00 | |
May | 19.50 | 20.00 | 27.00 | 52.00 | 24.00 | |
June | 19.50 | 17.50 | 22.00 | 41.00 | 28.00 | |
July | 19.50 | 15.00 | 23.00 | 30.00 | 27.77 | |
August | 24.50 | 27.50 | 27.00 | 22.00 | 28.09 | |
September | 18.00 | 22.00 | 21.00 | 24.00 | 28.01 | |
October | 16.50 | 35.50 | 21.00 | 48.00 | 22.60 | |
November | 22.00 | 26.50 | 22.00 | 35.00 | 27.22 | |
December | 20.50 | 27.00 | 24.00 | 41.00 | 23.56 | |
2016 | January | 21.75 | 24.14 | 23.22 | 35.53 | 20.00 |
February | 22.00 | 24.21 | 23.73 | 35.23 | 21.50 | |
March | 20.80 | 37.36 | 40.10 | 35.82 | 18.50 | |
April | 21.00 | 46.20 | 41.00 | 36.51 | 15.00 | |
May | 24.75 | 24.14 | 34.00 | 35.53 | 20.00 | |
June | 22.25 | 24.01 | 22.37 | 36.02 | 17.50 | |
July | 22.08 | 24.06 | 22.72 | 35.82 | 18.51 | |
August | 21.50 | 24.16 | 23.41 | 35.42 | 20.55 | |
September | 21.30 | 24.03 | 22.51 | 35.94 | 17.90 | |
October | 20.98 | 28.33 | 19.60 | 16.63 | 17.29 | |
November | 19.78 | 27.03 | 18.95 | 16.56 | 19.53 | |
December | 22.18 | 24.75 | 18.85 | 22.00 | 18.92 | |
2017 | January | 21.75 | 24.02 | 28.09 | 15.70 | 17.60 |
February | 22.00 | 24.43 | 28.00 | 16.20 | 25.80 | |
March | 20.80 | 25.30 | 28.05 | 15.90 | 43.00 | |
April | 21.00 | 25.79 | 26.95 | 22.30 | 52.70 | |
May | 24.75 | 25.22 | 28.45 | 13.60 | 41.50 | |
June | 22.25 | 25.55 | 28.45 | 30.04 | 48.00 | |
July | 22.08 | 20.20 | 23.10 | 35.05 | 23.41 | |
August | 21.50 | 27.75 | 23.10 | 24.75 | 20.67 | |
September | 21.30 | 21.53 | 25.50 | 24.70 | 24.55 | |
October | 20.98 | 28.33 | 19.60 | 28.54 | 22.60 | |
November | 19.78 | 27.03 | 18.95 | 23.62 | 27.22 | |
December | 22.18 | 24.75 | 18.85 | 29.17 | 23.56 |
Variables | Chi-Square | df | p-Value | Variables | Chi-Square | df | p-Value |
---|---|---|---|---|---|---|---|
Age | Quantitative variable | Burning of garbage inside the house | 0.002 | 1 | 0.962 | ||
Gender | 3.101 | 1 | 0.078 | Burning trash in the neighbourhood | 0.648 | 1 | 0.421 |
Socioeconomic Class | 2.267 | 2 | 0.322 | Kind of stove installed in the house | 0.445 | 3 | 0.931 |
Change of address | 0.023 | 1 | 0.880 | Sinusitis history | 11,008 | 1 | 0.001 |
Monthly family income | Quantitative variable | Laryngitis history | 1.908 | 1 | 0.167 | ||
Housing construction material | 1.413 | 1 | 0.235 | Pneumonia history | 8.845 | 1 | 0.003 |
Presence of sewerage in the house | 1.581 | 1 | 0.209 | Pyoderma history | 0.469 | 1 | 0.494 |
Type of floor in the lounge | 1.681 | 3 | 0.641 | Neonatal sepsis history | 0.152 | 1 | 0.696 |
Type of floor in the rooms | 1.423 | 3 | 0.700 | Varicella history | 0.688 | 1 | 0.407 |
Type of roof in the house | 0.768 | 2 | 0.681 | Does the child’s mother have asthma today? | 2.563 | 1 | 0.109 |
Presence of a toilet in the house | 0.670 | 1 | 0.413 | Does the child’s mother have rhinitis today? | 1.438 | 1 | 0.230 |
Contaminated water near the house | 2.005 | 1 | 0.157 | Does the child’s father have asthma today? | 1.042 | 1 | 0.307 |
Number of people residing in the house | Quantitative variables | Does the child’s siblings have asthma today? | 22,832 | 1 | 0.000 | ||
Number of people sleeping near the child under study | Does the child’s grandfather have/had asthma? | 4.295 | 1 | 0.038 | |||
Number of siblings living with the child | Positive in the Entamoeba histolytica test | 1.151 | 1 | 0.283 | |||
Presence of cockroaches in the house | 0.33 | 1 | 0.857 | Positive in the Entamoeba coli test | 0.188 | 1 | 0.665 |
Presence of rats/mice in the house | 0.06 | 1 | 0.806 | Positive in the Giardia lamblia test | 2.065 | 1 | 0.151 |
House built in one piece | 0.233 | 1 | 0.630 | Positive in the Blasto hominis test | 2.179 | 1 | 0.140 |
Pet presence in the house | 0.178 | 1 | 0.673 | Positive in the Ascaris lumbricoides test | 1.032 | 1 | 0.310 |
Presence of a dog | 0.021 | 1 | 0.885 | Positive in the Trichuris test | 0.578 | 1 | 0.447 |
Presence of a cat | 0.674 | 1 | 0.412 | Positive in the Hymenolepsis nana test | 5.299 | 1 | 0.021 |
Presence of a bird | 2.649 | 1 | 0.104 | Presence of parasites among the child’s relatives | 2.400 | 1 | 0.121 |
Presence of a corral animal | 0.175 | 1 | 0.676 | Blomia tropicalis sensitivity diagnosis | 0.759 | 1 | 0.384 |
Contact with external people from home | 3.044 | 1 | 0.081 | Cockroach sensitivity diagnosis | 1.076 | 1 | 0.300 |
Presence of a smoker in the house | 0.238 | 1 | 0.625 | Dog sensitivity diagnosis | 0.158 | 1 | 0.691 |
Vehicle flow per day | 5.237 | 3 | 0.155 | Cat sensitivity diagnosis | 6.428 | 1 | 0.011 |
Motorcycle flow per day | 0.681 | 1 | 0.409 | Presence of wheezing and nasal congestion 3 to 5 years old | 36.111 | 1 | 0.000 |
House location respect the road | 2.452 | 2 | 0.293 | Does the child present nasal obstruction? | 19,187 | 1 | 0.000 |
Number of cigarettes consumed inside home | Quantitative variable | Has the child been hospitalized for wheezing? | 69,323 | 1 | 0.000 |
Variable | Peak | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. Incid. | March 2014 | - | July 2014 | - | - | - | Dec 2014 | - | April 2015 | - | - | - | - | - | April 2016 | - | Sep 2016 | - |
Min. Incid. | - | May 2014 | - | - | - | Oct 2014 | - | Jan 2015 | - | May 2015 | - | - | - | Dec 2015 | - | Jun 2016 | - | - |
Max. PM. | March 2014 | - | May 2014 | - | Sep 2014 | - | Nov 2014 | - | April 2015 | - | - | Aug 2015 | - | - | April 2016 | - | Aug 2016 | - |
Min. PM. | - | April 2014 | - | Aug 2014 | - | Oct 2014 | - | Jan 2015 | - | - | July 2015 | - | Sept 2015 | Jan 2016 | - | Jun 2016 | - | Aug 2016 |
PM2.5 Statistics | Policia | Bocana | Cardique | Zona Franca | Naval Base | Maximum |
---|---|---|---|---|---|---|
Dry season mean | 21.55 | 25.07 | 26.87 | 34.99 | 23.76 | 36.20 |
Humid season mean | 20.89 | 26.07 | 21.56 | 27.23 | 24.67 | 31.85 |
Mean value | 21.70 | 24.62 | 25.13 | 33.16 | 24.43 | 35.27 |
5 maximum mean | 25.97 | 35.08 | 39.61 | 48.60 | 33.10 | 49.00 |
5 minimum mean | 17.91 | 17.70 | 16.56 | 18.94 | 17.24 | 24.78 |
Median | 21.88 | 24.10 | 23.10 | 35.12 | 24.00 | 35.12 |
Incidence Statistics | Value |
---|---|
Total incidence | 709 |
Dry season (incidence) | 719 |
Humid season (incidence) | 673 |
5 maximum values | 1021 |
5 minimum values | 335 |
Median | 731 |
Demonstration | Coincidence | Probability |
---|---|---|
Chi2 | Yes | 85.50% |
Statistical regression | No | 0.48% |
Visual Correlation | Yes | 61.00% |
Spectral Analysis | Yes | 75.00% |
Mean | Yes | 55.50% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldegunde, J.A.Á.; Sánchez, A.F.; Saba, M.; Bolaños, E.Q.; Caraballo, L.R. Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia. Atmosphere 2022, 13, 1383. https://doi.org/10.3390/atmos13091383
Aldegunde JAÁ, Sánchez AF, Saba M, Bolaños EQ, Caraballo LR. Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia. Atmosphere. 2022; 13(9):1383. https://doi.org/10.3390/atmos13091383
Chicago/Turabian StyleAldegunde, José Antonio Álvarez, Adrián Fernández Sánchez, Manuel Saba, Edgar Quiñones Bolaños, and Luis R. Caraballo. 2022. "Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia" Atmosphere 13, no. 9: 1383. https://doi.org/10.3390/atmos13091383
APA StyleAldegunde, J. A. Á., Sánchez, A. F., Saba, M., Bolaños, E. Q., & Caraballo, L. R. (2022). Spatiotemporal Analysis of PM2.5 Concentrations on the Incidence of Childhood Asthma in Developing Countries: Case Study of Cartagena de Indias, Colombia. Atmosphere, 13(9), 1383. https://doi.org/10.3390/atmos13091383