Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Protocol
2.2. Sampling Methods
2.2.1. Door Leakage Emissions
2.2.2. Charge Lid Emissions
2.2.3. Charging Emissions
2.2.4. Pushing Emissions
2.2.5. Stack Emissions
2.2.6. Quenching Emissions
2.3. Measurement Methods
2.3.1. Hydrocarbons in Exhaust Pipes
2.3.2. BTEX in Exhaust Pipes
2.3.3. Ambient NMHCs
2.3.4. Ambient BTEX
2.4. Data Analysis Methods
2.4.1. Concentration Conversion
2.4.2. Stack Emission Factor
2.4.3. Fugitive Emission Factor Formula
2.4.4. Formula for the Emission Factor of Cooking Process
2.4.5. QA/QC of Measurement
3. Results and Discussion
3.1. Concentration Distribution
3.2. Emission Factors of NMHCs
3.2.1. Door Emissions
3.2.2. Charge Lid Emissions
3.2.3. Charging Emissions
3.2.4. Emission Factor from Pushing Emissions
3.2.5. Combustion Stack Emissions
3.2.6. Quenching Emissions
3.2.7. Emission Factor for the Coke Oven Battery
3.3. Comparisons of VOC Emission Factors of Coke Oven Batteries
3.4. Recommendations on VOC Sampling for the Coke Oven Batteries in the Future
- For the cleaning of the airways of doors, high-pressure water jet machines must be installed on the pushing machine and guiding car. The cleaning should be performed each time to enhance the air tightness of the oven doors and the oven door frames, which could reasonably reduce the potential contamination caused by fugitive emissions from the doors (Figure 11).
- All of the oven door frames must be replaced prior to sampling to reduce leakages caused by fugitive emissions.
- The top bricks of coke ovens, riser pipes, and other metal components must be fully renovated to limit the pollution for preventing fugitive emissions from the top of coke ovens (Figure 12).
- The combustion chamber of the charging machine must be upgraded for the complete burning of VOCs generated during the charging process.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, R.Y.; Liu, G.J.; Zhang, H.; Xue, H.Q.; Wang, X. Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei. Ecotox. Environ. Saf. 2018, 160, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Tohid, L.; Sabeti, Z.; Sarbakhsh, P.; Benis, K.Z.; Shakerkhatibi, M.; Rasoulzadeh, Y.; Rahimian, R.; Darvishali, S. Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran. Atmos. Pollut. Res. 2019, 10, 556–563. [Google Scholar] [CrossRef]
- Abbasi, F.; Pasalari, H.; Delgado-Saborit, J.M.; Rafiee, A.; Abbasi, A.; Hoseini, M. Characterization and risk assessment of BTEX in ambient air of a Middle Eastern City. Process. Saf. Environ. Prot. 2020, 139, 98–105. [Google Scholar] [CrossRef]
- Cerón Bretón, J.G.; Cerón Bretón, R.M.; Ucan, F.V.; Baeza, C.B.; Espinosa Fuentes, M.L.; Ramírez Lara, E.; Rangel Marrón, M.; Pacheco, J.A.M.; Rodríguez Guzmán, U.; Chi, M.P. Characterization and sources of aromatic hydrocarbons (BTEX) in the atmosphere of two urban sites located in Yucatan Peninsula in Mexico. Atmosphere 2017, 8, 107. [Google Scholar] [CrossRef]
- Zhan, J.L.; Feng, Z.M.; Liu, P.F.; He, X.W.; He, Z.M.; Chen, T.Z.; Wang, Y.F.; He, H.; Mu, Y.J.; Liu, Y.C. Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. Environ. Pollut. 2021, 285, 117444. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.F.; Jing Gao, J.; Cai, Y.J.; Wang, J.J.; Pan, J. Real-time tracing VOCs, O3 and PM2.5 emission sources with vehicle-mounted proton transfer reaction mass spectrometry combined differential absorption lidar. Atmos. Pollut. Res. 2021, 12, 146–153. [Google Scholar] [CrossRef]
- Liu, Y.F.; Qiu, P.P.; Li, C.L.; Li, X.K.; Ma, W.; Yin, S.J.; Yu, Q.; Li, J.F.; Liu, X.G. Evolution and variations of atmospheric VOCs and O3 photochemistry during a summer O3 event in a county-level city, Southern China. Atmos. Environ. 2022, 272, 118942. [Google Scholar] [CrossRef]
- Yuan, C.S.; Cheng, W.H.; Huang, H.Y. Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis. J. Environ. Manag. 2022, 303, 114259. [Google Scholar] [CrossRef] [PubMed]
- Taiwan EPA. Rates of Air Pollution Control Fee of Stationary Sources; Taiwan EPA: Taipei, Taiwan, 2006.
- Taiwan EPA. Regulations for the Emission Factors of Volatile Organic Compounds from Industrial Processes and Operating Units (Including Equipment Components), Control Efficiency and Measurements with Respect to Public and Private Premises’ Reporting of Stationary Sources for Air Pollution Control Fees; Taiwan EPA: Taipei, Taiwan, 2007.
- U.S. EPA. AP-42: Compilation of Air Emission Factors; U.S. EPA: Washington, DC, USA, 2008.
- Taiwan EPA. Directions for Development of the Emission Factors (Including Control Efficiency) of Volatile Organic Compounds from Stationary Sources in Plants; Taiwan EPA: Taipei, Taiwan, 2009.
- Li, J.; Zhou, Y.; Simayi, M.; Deng, Y.Y.; Xie, S.D. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. J. Clean. Prod. 2019, 214, 224–235. [Google Scholar] [CrossRef]
- Amodio, M.; Andriani, E.; Dambruoso, P.R.; Gennaro, G.; Di Gilio, A.; Intini, M.; Palmisani, J.; Tutino, M. A monitoring strategy to assess the fugitive emission from a steel plant. Atmos. Environ. 2013, 79, 455–461. [Google Scholar] [CrossRef]
- Fan, R.F.; Li, J.N.; Chen, L.G.; Xu, Z.C.; He, D.H.; Zhou, Y.X.; Zhu, Y.Y.; Wei, F.H.; Li, J.H. Biomass fuels and coke plants are important sources of human exposure to polycyclic aromatic hydrocarbons, benzene and toluene. Environ. Res. 2014, 135, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ciaparra, D.; Aries, E.; Booth, M.J.; Anderson, D.R.; Almeida, S.M.; Harrad, S. Characterization of volatile organic compounds and polycyclic aromatic hydrocarbons in the ambient air of steelworks. Atmos. Environ. 2009, 43, 2070–2079. [Google Scholar] [CrossRef]
- Mu, L.; Peng, L.; Liu, X.; Song, C.; Bai, H.; Zhang, J.; Hu, D.; He, Q.; Li, F. Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants. Atmos. Environ. 2014, 83, 202–210. [Google Scholar] [CrossRef]
- Bigda, R.; Sobolewski, A.; Telenga-Kopyczyńska, J.; Słowik, K. Problems with determination of fugitive emission of polycyclic aromatic hydrocarbons from coke oven battery. J. Ecol. Eng. 2017, 18, 136–149. [Google Scholar] [CrossRef]
- NIEA A723.74B; Method for Determination of Total Hydrocarbon and Total Nonmethane Hydrocarbon Concentration Using Online Flame Ionization Detector Method. Taiwan EPA: Taipei, Taiwan, 2020.
- NIEA A722.76B; Method for the Determination of Gaseous Organic Compound Emissions by GC/FID. Taiwan EPA: Taipei, Taiwan, 2019.
- NIEA A740.10C; Method for Determination of Total Hydrocarbons in Air. Taiwan EPA: Taipei, Taiwan, 2014.
- NIEA A715.15B; Method for Determination of Volatile Organic Compounds (VOCs) in Air Collected in Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). Taiwan EPA: Taipei, Taiwan, 2014.
- Taiwan EPA. Calculation of the Emissions of Air Pollutants from Stationary Sources in Public and Private Premises; Taiwan EPA: Taipei, Taiwan, 2012.
- Cheng, L.; Wei, W.; Zhang, C.Z.; Xu, X.L.; Sha, K.C.; Meng, Q.B.; Jiang, Y.; Cheng, S.Y. Quantitation study on VOC emissions and their reduction potential for coking industry in China: Based on in-situ measurements on treated and untreated plants. Sci. Total Environ. 2022, 836, 155466. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Hao, R.; Fang, L.; Nie, L.; Zhang, Z.S.; Hao, Z.P. Study on emissions of volatile organic compounds from a typical coking chemical plant in China. Sci. Total Environ. 2021, 752, 141927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.M.; Wang, D.; Liu, Y.; Cui, Y.F.; Xue, Z.G.; Gao, Z.F.; Du, J.H. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant. J. Environ. Sci. 2020, 95, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Chiu, M.Y.; Ho, K.F.; Zou, S.C.; Wang, X.M. Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong. Chemosphere 2002, 48, 375–382. [Google Scholar] [CrossRef]
Emission Points (If Two Different Sampling Locations) | Sampling Methods | ||
---|---|---|---|
1. | Door Emissions | self-designed closed sampling method | |
2. | Charge Lid Emissions | self-designed closed sampling method | |
3. | Charging Emissions | charging telescope | self-designed closed sampling method |
charging machine’s stack | stack sampling method | ||
4. | Pushing Emissions | coke side | stack sampling method |
pushing side | stack sampling method | ||
5. | Combustion Stack Emissions | stack sampling method | |
6. | Quenching Emissions | stack sampling method |
Species | NMHCs | Benzene (B) | Toluene (T) | Ethylbenzene (E) | Xylene (X) |
---|---|---|---|---|---|
a | 0.71 | 3.48 | 4.10 | 4.73 | 4.73 |
Emission Sites (if at Different Locations) | NMHCs (ppm) | Benzene (ppm) | Toluene (ppm) | Ethylbenzene (ppm) | Xylene (ppm) | Sample No | |
---|---|---|---|---|---|---|---|
Door Emission | Lon-leaked | 3.57 ± 2.62 | 0.37 ± 0.68 | 0.17 ± 0.28 | 0 ± 0 | 0.34 ± 0.6 | 5 |
Leaked | 7.34 ± 2.72 | 0.19 ± 0.22 | 0.02 ± 0.04 | 0.01 ± 0.02 | 0.05 ± 0.08 | 5 | |
Charge Lid Emission | 36.19 ± 28.74 | 4.53 ± 3.29 | 0 ± 0 | 0.08 ± 0.17 | 0 ± 0 | 5 | |
Charging Emission | Charging telescope | 8.00 ± 7.68 | 0.8 ± 1.1 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 5 |
Stack | 35.67 ± 14.98 | 0.14 ± 0.24 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 3 | |
Pushing Emission | Coke side | 3.40 ± 3.71 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 5 |
Pushing side | 2.00 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 3 | |
Combustion Stack Emission | 6.67 ± 1.53 | 0.1 ± 0.17 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 3 | |
Quenching Emissions | 20.67 ± 4.51 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 3 |
VOCs | NMHCs | Benzene | Toluene | Ethylbenzene | Xylene | |
---|---|---|---|---|---|---|
This study | ppm | 118.73 | 5.92 | 0.16 | 0.08 | 0.31 |
% | -- | 5.0 | 0.1 | 0.1 | 0.3 | |
Taiwan EPA [10] | % | -- | 12.4 | 2.03 | 0.87 | 1.35 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient | |
---|---|---|---|---|---|---|---|
Non- leakage | DN1 | 0.0001 | 1.41 | 0.0001 | 0.0001 | 0.0001 | 100% |
DN2 | 0.0001 | 1.23 | 0.0000 | ||||
DN3 | 0.0002 | 1.43 | 0.0002 | ||||
DN4 | 0.0001 | 1.40 | 0.0003 | ||||
DN5 | 0.0003 | 1.32 | 0.0002 | ||||
Emission Factor of non-leakage | 0.0002 | ||||||
Leakage | DL1 | 0.0005 | 1.35 | 0.0004 | 0.0003 | 0.0001 | 33.3% |
DL2 | 0.0004 | 1.34 | 0.0003 | ||||
DL3 | 0.0004 | 1.26 | 0.0003 | ||||
DL4 | 0.0004 | 1.49 | 0.0003 | ||||
DL5 | 0.0006 | 1.62 | 0.0005 | ||||
Emission Factor of leakage | 0.0004 | ||||||
Emission Factor of door emissions (EFd) | 0.0002 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
CL1 | 0.0006 | 1.41 | 0.0004 | 0.0012 | 0.0008 | 67% |
CL2 | 0.0015 | 1.35 | 0.0011 | |||
CL3 | 0.0026 | 1.34 | 0.0020 | |||
CL4 | 0.0014 | 1.26 | 0.0011 | -- | -- | |
CL5 | 0.0050 | 1.43 | 0.0035 | -- | -- | |
Emission Factor of charge lid Emissions (EFcl) | 0.0016 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
CS1 | 0.86 | 136.75 | 0.0063 | 0.0079 | 0.0014 | 18% |
CS2 | 1.24 | 139 | 0.0089 | |||
CS3 | 1.14 | 133.3 | 0.0086 | |||
Emission Factor of stack | 0.0079 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
CF1 | 0.0014 | 1.41 | 0.0010 | 0.0004 | 0.0005 | 125% |
CF2 | 0.0000 | 1.35 | −0.000026 (counted as 0) | |||
CF3 | 0.0003 | 1.34 | 0.0003 | |||
CF4 | 0.0004 | 1.26 | 0.0003 | -- | -- | |
CF5 | 0.0002 | 1.43 | 0.0002 | -- | -- | |
Emission Factor of charging telescope | 0.004 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
PC1 | 0.3 | 108.4 | 0.0034 | 0.0029 | 0.0010 | 34% |
PC2 | 0.15 | 104.1 | 0.0017 | |||
PC3 | 0.29 | 102 | 0.0035 | |||
PC4 | 0.25 | 99.4 | 0.0032 | |||
PC5 | 1.15 | 114.8 | 0.0126 | |||
Emission Factor of coke side | 0.0049 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
PP1 | 0.03 | 108.4 | 0.0005 | 0.0005 | 0% | 0% |
PP2 | 0.03 | 104.1 | 0.0005 | |||
PP3 | 0.03 | 102 | 0.0005 | |||
Emission Factor of push side | 0.0005 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
S1 | 0.85 | 128.83 | 0.0066 | 0.0083 | 0.0016 | 19% |
S2 | 1.34 | 136.75 | 0.0098 | |||
S3 | 1.18 | 137.75 | 0.0085 | |||
Emission Factor of Combustion Stack | 0.0083 |
Samples | Mass Flow Rate (kg/h) | Activity (ton/h) | Emission Factor (kg VOCs/ton) | Average (kg VOCs/ton) | Standard Deviation (kg VOCs/ton) | Variation Coefficient |
---|---|---|---|---|---|---|
Q1 | 1.05 | 160 | 0.0066 | 0.0061 | 0.0011 | 18% |
Q2 | 1.11 | 160 | 0.0069 | |||
Q3 | 0.69 | 140 | 0.0049 | |||
Emission Factor of quenching emissions | 0.0061 |
Emission Sources | Emission Factors (kg VOCs/ton) | ||
---|---|---|---|
AP-42 [11] | Cheng et al. [24] | This Study | |
Door Emissions | 0.0534 a | 0.4433 b | 0.0002 |
Charge Lid Emissions | 0.0095 a | 0.0016 | |
Charging Emissions | 0.0080 a | 0.0116 | 0.0083 |
Pushing Emissions | 0.0513 | 0.0155 | 0.0054 |
Combustion Stack Emissions | 0.0634 | 0.1271 | 0.0083 |
Quenching Emissions | - | 0.0003 | 0.0061 |
TVOCs from the coke oven | 0.1857 | 0.5978 | 0.0299 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, C.-T.; Cheng, W.-H.; Lin, Y.-C.; Chang, K.-L.; Chen, K.-S.; Yuan, C.-S. Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique. Atmosphere 2022, 13, 1363. https://doi.org/10.3390/atmos13091363
Shao C-T, Cheng W-H, Lin Y-C, Chang K-L, Chen K-S, Yuan C-S. Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique. Atmosphere. 2022; 13(9):1363. https://doi.org/10.3390/atmos13091363
Chicago/Turabian StyleShao, Cheng-Tsung, Wen-Hsi Cheng, Yuan-Chung Lin, Ken-Lin Chang, Kang-Shin Chen, and Chung-Shin Yuan. 2022. "Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique" Atmosphere 13, no. 9: 1363. https://doi.org/10.3390/atmos13091363
APA StyleShao, C. -T., Cheng, W. -H., Lin, Y. -C., Chang, K. -L., Chen, K. -S., & Yuan, C. -S. (2022). Qualifying and Quantifying the Emissions of Volatile Organic Compounds from the Coking Process in a Steel Plant Using an Innovative Sampling Technique. Atmosphere, 13(9), 1363. https://doi.org/10.3390/atmos13091363