Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. The Data of Space Weather Variables
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakusic, N.; Slivnjak, V.; Baborski, F.; Sonicki, Z. Heart rate variability in patients after cardiac valve surgery. Cent. Eur. J. Med. 2008, 3, 65–70. [Google Scholar] [CrossRef]
- Sollers, J.J.; Sanford, T.A.; Nabors-Oberg, R.; Anderson, C.A.; Thayer, J.F. Examining changes in HRV in response to varying ambient temperature. IEEE Eng. Med. Biol. Mag. 2002, 21, 30–34. [Google Scholar] [CrossRef]
- Maestri, R.; Pinna, G.D.; Balocchi, R.; D’Addio, G.; Ferrario, M.; Porta, A.; Sassi, R.; Signorini, M.G.; La Rovere, M.T. Nonlinear indices of heart rate variability in chronic heart failure patients: Redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 2007, 18, 425–433. [Google Scholar] [CrossRef]
- Shin, H. Ambient temperature effect on pulse rate variability as an alternative to heart rate variability in young adult. J. Clin. Monit. Comput. 2016, 30, 939–948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hintsala, H.; Kenttä, T.V.; Tulppo, M.; Kiviniemi, A.; Huikuri, H.V.; Mäntysaari, M.; Keinänen-Kiukaannemi, S.; Bloigu, R.; Herzig, K.H.; Antikainen, R.; et al. Cardiac repolarization and autonomic regulation during short-term cold exposure in hypertensive men: An experimental study. PLoS ONE 2014, 9, e99973. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lian, Z.; Liu, Y. Heart rate variability at different thermal comfort levels. Eur. J. Appl. Physiol. 2008, 103, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; He, Y.; Zhang, X.; Li, H.; Huang, C.; Wang, C.; Gao, Y.; Li, Y.; Kan, H.; Hu, J.; et al. The acute effects of temperature variability on heart rate variability: A repeated-measure study. Environ. Res. 2021, 194, 110655. [Google Scholar] [CrossRef]
- Yao, Y.; Lian, Z.; Liu, W.; Jiang, C.; Liu, Y.; Lu, H. Heart rate variation and electroencephalograph--the potential physiological factors for thermal comfort study. Indoor Air 2009, 19, 93–101. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, H.; Liu, Z.; Li, D.; Kou, G.; Li, C. Experimental study on the human thermal comfort based on the heart rate variability (HRV) analysis under different environments. Sci. Total Environ. 2018, 616–617, 1124–1133. [Google Scholar] [CrossRef]
- Adar, S.D.; Gold, D.R.; Coull, B.A.; Schwartz, J.; Stone, P.H.; Suh, H. Focused Exposures to Airborne Traffic Particles and Heart Rate Variability in the Elderly. Epidemiology 2007, 1, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Liu, F.; Li, B.; Li, N.; Yu, H.; Wang, Y.; Tang, H.; Chen, X.; Lu, Y.; Cheng, Z.; et al. Acute effect of ambient fine particulate matter on heart rate variability: An updated systematic review and meta-analysis of panel studies. Environ. Health Prev. Med. 2020, 25, 77. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; O’Neill, M.S.; Vokonas, P.S.; Sparrow, D.; Schwartz, J. Effects of air pollution on heart rate variability: The VA normative aging study. Environ. Health Perspect. 2005, 113, 304–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCraty, R.; Atkinson, M.; Stolc, V.; Alabdulgader, A.A.; Vainoras, A.; Ragulskis, M. Synchronization of Human Autonomic Nervous System Rhythms with Geomagnetic Activity in Human Subjects. Int. J. Environ. Res. Public Health 2017, 14, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alabdulgader, A.; McCraty, R.; Atkinson, M.; Dobyns, Y.; Vainoras, A.; Ragulskis, M.; Stolc, V. Long-Term Study of Heart Rate Variability Responses to Changes in the Solar and Geomagnetic Environment. Sci. Rep. 2018, 8, 2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baevsky, R.M.; Petrov, V.M.; Cornelissen, G.; Halberg, F.; Orth-Gomer, K.; Akerstedt, T.; Otsuka, K.; Breus, T.; Siegelova, J.; Dusek, J.; et al. Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr. Med. 1997, 70, 201–206. [Google Scholar]
- Cornelissen, G.; Halberg, F.; Breus, T.; Syutkina, E.V.; Baevsky, R.; Weydahl, A.; Watanabe, Y.; Otsuka, K.; Siegelova, J.; Fiser, B.; et al. Non-photic solar associations of heart rate variability and myocardial infarction. J. Atmos. Sol. -Terr. Phys. 2002, 64, 707–720. [Google Scholar] [CrossRef]
- Breus, T.K.; Baevskii, R.M.; Chernikova, A.G. Effects of geomagnetic disturbances on humans functional state in space flight. J. Biomed. Sci. Eng. 2012, 5, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, K.; Cornélissen, G.; Weydahl, A.; Holmeslet, B.; Hansen, T.L.; Shinagawa, M.; Kubo, Y.; Nishimura, Y.; Omori, K.; Yano, S.; et al. Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed. Pharmacother. 2001, 55 (Suppl. S1), 51s–56s. [Google Scholar] [CrossRef]
- Janashia, K.; Tvildiani, L.; Tsibadze, T.; Invia, N.; Kukhianidze, V.; Ramishvili, G. Reactions of the Autonomic Nervous System of Healthy Male Humans on the Natural and Simulated Conditions of the Geomagnetic Field. Am. J. Clin. Exp. Med. 2020, 8, 69–76. [Google Scholar] [CrossRef]
- Mattoni, M.; Ahn, S.; Fröhlich, C.; Fröhlich, F. Exploring the relationship between geomagnetic activity and human heart rate variability. Eur. J. Appl. Physiol. 2020, 120, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Wanliss, J.; Cornélissen, G.; Halberg, F.; Brown, D.; Washington, B. Superposed epoch analysis of physiological fluctuations: Possible space weather connections. Int. J. Biometeorol. 2018, 62, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Caswell, J.M.; Singh, M.; Persinger, M.A. Simulated sudden increase in geomagnetic activity and its effect on heart rate variability: Experimental verification of correlation studies. Life Sci. Space Res. 2016, 10, 47–52. [Google Scholar] [CrossRef]
- Gurfinkel, Y.I.; Vasin, A.L.; Pishchalnikov, R.Y.; Sarimov, R.M.; Sasonko, M.L.; Matveeva, T.A. Geomagnetic storm under laboratory conditions: Randomized experiment. Int. J. Biometeorol. 2017, 62, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Janashia, K.; Tvildiani, L.; Tsibadze, T.; Invia, N. Effects of the geomagnetic field time–varying components compensation as evidenced by heart rate variability of healthy males. Life Sci. Space Res. 2022, 32, 38–44. [Google Scholar] [CrossRef]
- Gurfinkel’, I.; Liubimov, V.V.; Oraevskiĭ, V.N.; Parfenova, L.M.; Iur’ev, A.S. Vliianie geomagnitnykh vozmushcheniĭ na kapilliarnyĭ krovotok u bol’nykh ishemicheskoĭ bolezn’iu serdtsa [The effect of geomagnetic disturbances in capillary blood flow in ischemic heart disease patients]. Biofizika 1995, 40, 793–799. (In Russian) [Google Scholar]
- Oraevskiĭ, V.N.; Breus, T.K.; Baevskiĭ, R.M.; Rapoport, S.I.; Petrov, V.M.; Barsukova, Z.V.; Gurfinkel’, I.; Rogoza, A.T. Vliianie geomagnitnoĭ aktivnosti na funktsional’noe sostoianie organizma [Effect of geomagnetic activity on the functional status of the body]. Biofizika 1998, 43, 819–826. (In Russian) [Google Scholar]
- Zenchehko, T.A.; Poskotinova, L.V.; Rekhtina, A.G.; Zaslavskaia, R.M. Relation between microcirculation parameters and Pc3 geomagnetic pulsations. Biofizika 2010, 55, 732–739. (In Russian) [Google Scholar]
- Vencloviene, J.; Babarskiene, R.; Milvidaite, I.; Kubilius, R.; Stasionyte, J. The effect of solar-geomagnetic activity during and after admission on survival in patients with acute coronary syndromes. Int. J. Biometeorol. 2014, 58, 1295–1303. [Google Scholar] [CrossRef]
- Vencloviene, J.; Babarskiene, R.; Dobozinskas, P.; Sakalyte, G.; Lopatiene, K.; Mikelionis, N. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Int. J. Environ. Res. 2019, 12, 2622–2638. [Google Scholar] [CrossRef] [Green Version]
- Howell, S.J.; Wanigasekera, V.; Young, J.D.; Gavaghan, D.; Sear, J.W.; Garrard, C.S. Effects of propofol and thiopentone, and benzodiazepine premedication on heart rate variability measured by spectral analysis. Br. J. Anaesth. 1995, 74, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Nenna, A.; Lusini, M.; Spadaccio, C.; Nappi, F.; Greco, S.M.; Barbato, R.; Covino, E.; Chello, M. Heart rate variability: A new tool to predict complications in adult cardiac surgery. J. Geriatr. Cardiol. 2017, 14, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.D.; Chen, G.Y.; Lai, S.T.; Wang, Y.Y.; Shih, C.C.; Wang, J.H. Sequential changes in heart rate variability after coronary artery bypass grafting. Am. J. Cardiol. 1999, 83, 776–779. [Google Scholar] [CrossRef]
- Veretenenko, S.; Thejll, P. Effects of energetic solar proton events on the cyclone development in the North Atlantic. J. Atmos. Sol. Terr. Phys. 2004, 66, 393–405. [Google Scholar] [CrossRef]
- Zhou, L.; Tinsley, B.; Huang, J. Effects on winter circulation of short and long term solar wind changes. Adv. Space Res. 2014, 54, 2478–2490. [Google Scholar] [CrossRef]
- Zhou, L.; Tinsley, B.; Chu, H.; Xiao, Z. Correlations of global sea surface temperatures with the solar wind speed. J. Atmos. Sol. -Terr. Phys. 2016, 149, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Prikryl, P.; Iwao, K.; Muldrew, D.B.; Rušin, V.; Rybanský, M.; Bruntz, R. A link between high-speed solar wind streams and explosive extratropical cyclones. J. Atmos. Sol. Terr. Phys. 2016, 149, 219–231. [Google Scholar] [CrossRef]
- Giertz, H.W. Extremely low frequency electromagnetic energy in the air. J. Atmos. Sol. -Terr. Phys. 2010, 72, 767–773. [Google Scholar] [CrossRef]
- Funk, R.H.; Monsees, T.; Ozkucur, N. Electromagnetic effects—From cell biology to medicine. Prog. Histochem. Cytochem. 2009, 43, 177–264. [Google Scholar] [CrossRef]
- Wilcox, J.M.; Scherrer, P.H.; Svalgaard, L.; Roberts, W.O.; Olson, R.H. Solar Magnetic Sector Structure: Relation to Circulation of the Earth’s Atmosphere. Science 1973, 180, 185–186. [Google Scholar] [CrossRef]
- Tinsley, B.A.; Deen, G.W. Apparent tropospheric response to MeV–GeV particle flux variations, a connection via electrofreezing of supercooled water in high level clouds? J. Geophys. Res. 1991, 96, 2283–2296. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.A. Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamic in the troposphere. Space Sci. Rev. 2000, 94, 231–258. [Google Scholar] [CrossRef]
- Vencloviene, J.; Beresnevaite, M.; Cerkauskaite, S.; Grizas, V.; Kriukelyte, D.; Benetis, R. The short-term effect of weather variables on heart rate variability in patients after open-heart surgery. Int. J. Environ. Health Res. 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Palmer, S.J.; Rycroft, M.J.; Cermack, M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv. Geophys. 2006, 27, 557–595. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and Regression Trees; Wadsworth International Group: Belmont, CA, USA, 1984. [Google Scholar]
- Borovsky, J.E.; Shprits, Y.Y. Is the Dst index sufficient to define all geospace storms? J. Geophys. Res. Space Phys. 2017, 122, 11543–11547. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, W.D.; Tsurutani, B.T.; Clúa de Gonzalez, A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, 88, 529–562. [Google Scholar] [CrossRef]
- Asikainen, T.; Ruopsa, M. Solar wind drivers of energetic electron precipitation. J. Geophys. Res. Space Phys. 2016, 121, 2209–2225. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.A. A working hypothesis for connections between electrically-induced changes in cloud microphysics and storm vorticity, with possible effects on circulation. Adv. Space Res. 2012, 50, 791–805. [Google Scholar] [CrossRef]
- Prikryl, P.; Ruˇsin, V.; Rybansk´y, M. The influence of solar wind on extratropical cyclones—Part 1: Wilcox effect revisited. Ann. Geophys. 2009, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Galata, E.; Ioannidou, S.; Papailiou, M.; Mavromichalaki, H.; Paravolidakis, K.; Kouremeti, M.; Rentifis, L.; Simantirakis, E.; Trachanas, K. Impact of space weather on human heart rate during the years 2011–2013. Astrophys. Space Sci. 2017, 362, 138. [Google Scholar] [CrossRef]
- Stoupel, E. Cardiac arrhythmia and geomagnetic activity. Indian Pacing Electrophysiol. J. 2006, 6, 49–53. [Google Scholar] [PubMed]
- Ebrille, E.; Konecny, T.; Konecny, D.; Spacek, R.; Jones, P.; Ambroz, P.; DeSimone, C.V.; Powell, B.D.; Hayes, D.L.; Friedman, P.A.; et al. Correlation of geomagnetic activity with implantable cardioverter defibrillator shocks and antitachycardia pacing. Mayo. Mayo Clin. Proc. 2015, 90, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, J.W.; Lancaster, T.S.; Schuessler, R.B.; Melby, S.J. Postoperative atrial fibrillation following cardiac surgery: A persistent complication. Eur. J. Cardio-Thorac. Surg. 2017, 52, 665–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, J.C.; Huang, C.Y.; Chuang, S.L.; Yu, H.Y.; Chen, Y.S.; Wang, C.H.; Lin, L.Y. Long Term Outcome of Postoperative Atrial Fibrillation After Cardiac Surgery–A Propensity Score-Matched Cohort Analysis. Front. Cardiovasc. Med. 2021, 8, 650147. [Google Scholar] [CrossRef]
- Mironova, I.; Tinsley, B.; Zhou, L. The links between atmospheric vorticity, radiation belt electrons, and the solar wind. Adv. Space Res. 2012, 50, 783–790. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2009, 79, 231–244. [Google Scholar] [CrossRef]
- Porges, S.W. The polyvagal theory: New insights into adaptive reactions of the autonomic nervous system. Clevel. Clin. J. Med. 2009, 76 (Suppl. S2), S86–S90. [Google Scholar] [CrossRef]
- Cattaneo, L.A.; Franquillo, A.C.; Grecucci, A.; Beccia, L.; Caretti, V.; Dadomo, H. Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View. J. Pers. Med. 2021, 11, 872. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-term heart rate variability--influence of gender and age in healthy subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [Green Version]
- Vencloviene, J.; Braziene, A.; Dobozinskas, P. Short-Term Changes in Weather and Space Weather Conditions and Emergency Ambulance Calls for Elevated Arterial Blood Pressure. Atmosphere 2018, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Jelinek, H.F.; Md Imam, H.; Al-Aubaidy, H.; Khandoker, A.H. Association of cardiovascular risk using non-linear heart rate variability measures with the framingham risk score in a rural population. Front. Physiol. 2013, 4, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.K.; Reddy, A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J. 2005, 5, 210–220. [Google Scholar] [PubMed]
- Otsuka, K.; Murakami, S.; Kubo, Y.; Yamanaka, T.; Mitsutake, G.; Ohkawa, S.; Matsubayashi, K.; Yano, S.; Cornelissen, G.; Halberg, F. Chronomics for chronoastrobiology with immediate spin-offs for life quality and longevity. Biomed Pharmacother. 2003, 57 (Suppl. 1), 1s–18s. [Google Scholar] [CrossRef] [PubMed]
Variable | Median (Q1; Q3) | Min | Max |
---|---|---|---|
Local A, nT | 5 (3; 8) | 0 | 28 |
Ap, nT | 4 (3; 7) | 0 | 42 |
Ap during the surgery, nT | 4 (3; 6.75) | 0 | 38 |
Maximal 3-hourly ap, nT | 7 (5; 15) | 0 | 154 |
DST | −4 (−9; 1) | −80 | 20 |
SWS, km/s | 375 (338; 430) | 256 | 677 |
HRV | Variable | Lag | All | Male | Female | |||
---|---|---|---|---|---|---|---|---|
Parameter | β (SE) | p | β (SE) | p | β (SE) | p | ||
NN | IMF positive | −45.1 (12.5) | <0.001 | −35.9 (15.4) | 0.020 | −91.4 (22.4) | <0.001 | |
Ln (SDNN) | op: Ap < 8 | 2 | −0.25 (0.08) | 0.001 | −0.25 (0.09) | 0.005 | −0.19 (0.16) | 0.256 |
SWS < 304 | 2 | −0.34 (0.10) | 0.001 | −0.41 (0.12) | 0.001 | 0.03 (0.26) | 0.916 | |
Ln (VLF) | op: Ap < 8 | 2 | −0.23 (0.07) | 0.002 | −0.25 (0.09) | 0.004 | −0.09 (0.16) | 0.586 |
SWS < 304 | 2 | −0.31 (0.10) | 0.003 | 0.36 (0.12) | 0.002 | 0.08 (0.26) | 0.763 | |
Ln (LF) | op: Ap < 8 | 2 | −0.24 (0.08) | 0.004 | −0.22 (0.09) | 0.018 | −0.21 (0.18) | 0.246 |
SWS < 304 | 2 | −0.36 (0.11) | 0.002 | −0.43 (0.13) | 0.001 | 0.04 (0.29) | 0.899 | |
Ln (HF) | op: Ap < 8 | 2 | −0.21 (0.09) | 0.016 | −0.19 (0.11) | 0.067 | −0.19 (0.18) | 0.305 |
SWS < 304 | 2 | 0.32 (0.12) | 0.010 | −0.35 (0.14) | 0.014 | −0.11 (0.29) | 0.708 | |
VLF% | DST > 1 | 1 | 4.90 (1.81) | 0.007 | 5.85 (2.20) | 0.008 | 3.37 (3.70) | 0.365 |
apmax < 4 | 0 | −6.41 (2.42) | 0.008 | −4.70 (2.80) | 0.094 | −12.8 (5.60) | 0.025 | |
LF% | DST > 1 | 1 | −2.39 (1.04) | 0.022 | −2.10 (1.22) | 0.086 | −2.41 (2.23) | 0.282 |
Ln (HF%) | DST > 4 | 0 | −0.27 (0.10) | 0.010 | −0.35 (0.13) | 0.006 | −0.13 (0.17) | 0.440 |
DST > 1 | 1 | −0.18 (0.08) | 0.025 | −0.23 (0.10) | 0.018 | −0.04 (0.13) | 0.775 | |
apmax < 4 | 0 | 0.29 (0.10) | 0.004 | 0.25 (0.12) | 0.041 | 0.39 (0.20) | 0.054 | |
SWS > 425 | 0 | −0.19 (0.08) | 0.012 | −0.22 (0.09) | 0.013 | −0.20 (0.15) | 0.182 | |
Ln (LF/HF) | DST > 4 | 0 | 0.38 (0.10) | <0.001 | 0.45 (0.12) | <0.001 | 0.23 (0.19) | 0.237 |
Ap < 4 | 1 | −0.19 (0.07) | 0.007 | −0.16 (0.09) | 0.069 | −0.27 (0.13) | 0.046 | |
apmax < 4 | 0 | −0.28 (0.10) | 0.006 | −0.20 (0.12) | 0.094 | −0.50 (0.23) | 0.037 |
HRV | Variable | Lag | Only CABG | Only VS | CABG + VS | |||
---|---|---|---|---|---|---|---|---|
Parameter | β (SE) | p | β (SE) | p | β (SE) | p | ||
NN | IMF positive | −39.7 (14.4) | 0.006 | −112 (33.2) | 0.001 | −8.8 (38.8) | 0.821 | |
Ln (SDNN) | op: Ap < 8 | 2 | −0.19 (0.09) | 0.027 | −0.73 (0.24) | 0.004 | −0.27 (0.28) | 0.337 |
SWS < 304 | 2 | −0.34 (0.12) | 0.007 | −0.07 (0.33) | 0.835 | −0.58 (0.28) | 0.048 | |
Ln (VLF) | op: Ap < 8 | 2 | −0.17 (0.08) | 0.035 | −0.63 (0.25) | 0.015 | −0.23 (0.27) | 0.413 |
SWS < 304 | 2 | −0.26 (0.12) | 0.027 | 0.05 (0.34) | 0.880 | −0.65 (0.27) | 0.023 | |
Ln (LF) | op: Ap < 8 | 2 | −0.17 (0.09) | 0.068 | −0.74 (0.26) | 0.005 | −0.12 (0.29) | 0.684 |
SWS < 304 | 2 | −0.33 (0.14) | 0.018 | −0.25 (0.35) | 0.470 | −0.51 (0.30) | 0.101 | |
Ln (HF) | op: Ap < 8 | 2 | −0.12 (0.10) | 0.265 | −0.75 (0.25) | 0.003 | −0.02 (0.33) | 0.949 |
SWS < 304 | 2 | −0.30 (0.15) | 0.050 | −0.23 (0.33) | 0.482 | −0.36 (0.33) | 0.287 | |
VLF% | DST > 1 | 1 | 5.23 (2.42) | 0.032 | −0.27 (4.16) | 0.949 | 10.1 (5.15) | 0.057 |
apmax < 4 | 0 | −5.95 (2.90) | 0.041 | 0.09 (10.1) | 0.930 | −6.43 (6.11) | 0.299 | |
LF% | DST > 1 | 1 | −3.28 (1.39) | 0.019 | 2.63 (2.56) | 0.248 | −3.75 (2.52) | 0.145 |
Ln (HF%) | DST > 4 | 0 | −0.33 (0.13) | 0.011 | −0.30 (0.24) | 0.214 | −0.08 (0.30) | 0.785 |
DST > 1 | 1 | −0.13 (0.10) | 0.203 | −0.10 (0.19) | 0.598 | −0.25 (0.23) | 0.281 | |
apmax < 4 | 0 | 0.22 (0.13) | 0.081 | 0.62 (0.43) | 0.156 | 0.44 (0.25) | 0.088 | |
SWS > 425 | 0 | −0.28 (0.09) | 0.002 | −0.09 (0.21) | 0.678 | −0.01 (0.20) | 0.989 | |
Ln (LF/HF) | DST > 4 | 0 | 0.42 (0.13) | 0.002 | 0.12 (0.23) | 0.599 | 0.47 (0.28) | 0.094 |
Ap < 4 | 1 | −0.21 (0.09) | 0.023 | −0.04 (0.17) | 0.821 | −0.15 (0.18) | 0.405 | |
apmax < 4 | 0 | −0.19 (0.12) | 0.123 | −0.41 (0.43) | 0.343 | −0.65 (0.26) | 0.019 |
HRV Parameter | Variable | Lag | β (SE) | p |
---|---|---|---|---|
Ln (SDNN) | op: Ap ≥ 8 | 2 | Reference category | |
op: 5 ≤ Ap ≤ 7 | −0.29 (0.09) | 0.001 | ||
op: 3 ≤ Ap ≤ 4 | −0.24 (0.09) | 0.009 | ||
op: Ap ≤ 2 | −0.32 (0.10) | 0.001 | ||
Ln (VLF) | op: Ap ≥ 8 | 2 | Reference category | |
op: 5 ≤ Ap ≤ 7 | −0.27 (0.09) | 0.002 | ||
op: 3 ≤ Ap ≤ 4 | −0.21 (0.09) | 0.016 | ||
op: Ap ≤ 2 | −0.29 (0.09) | 0.002 | ||
Ln (LF) | op: Ap ≥ 8 | 2 | Reference category | |
op: 5 ≤ Ap ≤ 7 | −0.28 (0.10) | 0.005 | ||
op: 3 ≤ Ap ≤ 4 | −0.22 (0.10) | 0.026 | ||
op: Ap ≤ 2 | −0.31(0.10) | 0.003 | ||
Ln (HF) | op: Ap ≥ 8 | 2 | Reference category | |
op: 5 ≤ Ap ≤ 7 | −0.27 (0.11) | 0.010 | ||
op: 3 ≤ Ap ≤ 4 | −0.20 (0.11) | 0.066 | ||
op: Ap ≤ 2 | −0.27 (0.11) | 0.017 | ||
VLF% | apmax ≥ 4 | 0 | Reference category | |
apmax = 3 | −6.38 (2.9) | 0.028 | ||
apmax ≤ 2 | −7.89 (4.2) | 0.060 | ||
Ln (HF%) | apmax ≥ 4 | 0 | Reference category | |
apmax = 3 | 0.29 (0.12) | 0.018 | ||
apmax ≤ 2 | 0.34 (0.18) | 0.056 | ||
Ln (HF%) | SWS ≤ 425 | 0 | Reference category | |
425 < SWS ≤ 600 | −0.18 (0.08) | 0.027 | ||
SWS > 600 | −0.32 (0.18) | 0.076 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vencloviene, J.; Beresnevaite, M.; Cerkauskaite, S.; Ragaisyte, N.; Pilviniene, R.; Benetis, R. Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery. Atmosphere 2022, 13, 1330. https://doi.org/10.3390/atmos13081330
Vencloviene J, Beresnevaite M, Cerkauskaite S, Ragaisyte N, Pilviniene R, Benetis R. Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery. Atmosphere. 2022; 13(8):1330. https://doi.org/10.3390/atmos13081330
Chicago/Turabian StyleVencloviene, Jone, Margarita Beresnevaite, Sonata Cerkauskaite, Nijole Ragaisyte, Rugile Pilviniene, and Rimantas Benetis. 2022. "Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery" Atmosphere 13, no. 8: 1330. https://doi.org/10.3390/atmos13081330
APA StyleVencloviene, J., Beresnevaite, M., Cerkauskaite, S., Ragaisyte, N., Pilviniene, R., & Benetis, R. (2022). Statistical Associations between Geomagnetic Activity, Solar Wind, Cosmic Ray Intensity, and Heart Rate Variability in Patients after Open-Heart Surgery. Atmosphere, 13(8), 1330. https://doi.org/10.3390/atmos13081330