Accuracy Assessment of a Satellite-Based Rain Estimation Algorithm Using a Network of Meteorological Stations over Epirus Region, Greece
Abstract
:1. Introduction
2. Data, Tools and Methods
2.1. Data
2.2. Tools
2.3. Methods
3. Results and Discussion
4. Case Study Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karkani, A.; Evelpidou, N.; Tzouxanioti, M.; Petropoulos, A.; Santangelo, N.; Maroukian, H.; Spyrou, E.; Lakidi, L. Flash Flood Susceptibility Evaluation in human-affected areas using geomorphological methods—The Case of 9 August 2020, Euboea, Greece. A GIS-Based Approach. GeoHazards 2021, 2, 366–382. [Google Scholar] [CrossRef]
- Esposito, G.; Matano, F.; Scepi, G. Analysis of Increasing Flash Flood Frequency in the Densely Urbanized Coastline of the Campi Flegrei Volcanic Area, Italy. Front. Earth Sci. 2018, 6, 23. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pinskwar, I.; Brakenridge, G.R. Large floods in Europe, 1985–2009. Hydrol. Sci. J. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bievre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Abbate, A.; Papini, M.; Longoni, L. Extreme Rainfall over Complex Terrain: An Application of the Linear Model of Orographic Precipitation to a Case Study in the Italian Pre-Alps. Geosciences 2021, 11, 18. [Google Scholar] [CrossRef]
- Saltikoff, E.; Friedrich, K.; Soderholm, J.; Lengfeld, K.; Nelson, B.; Becker, A.; Hollmann, R.; Urban, B.; Heistermann, M.; Tassone, C. An Overview of Using Weather Radar for Climatological Studies: Successes, Challenges, and Potential. Bull. Am. Meteorol. Soc. 2019, 100, 1739–1752. [Google Scholar] [CrossRef]
- Schleiss, M.; Olsson, J.; Berg, P.; Niemi, T.; Kokkonen, T.; Thorndahl, S.; Nielsen, R.; Nielsen, J.; Bozhinova, D.; Pulkkinen, S. The accuracy of weather radar in heavy rain: A comparative study for Denmark, the Netherlands, Finland and Sweden. Hydrol. Earth Syst. Sci. 2020, 24, 3157–3188. [Google Scholar] [CrossRef]
- Sokol, Z.; Szturc, J.; Orellana-Alvear, J.; Popová, J.; Jurczyk, A.; Célleri, R. The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review. Remote Sens. 2021, 13, 351. [Google Scholar] [CrossRef]
- Fienberg, K.; Foufoula-Georgiou, E. Atmospheric Water and Precipitation. In Encyclopedia of Inland Waters, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 1, pp. 651–660. [Google Scholar]
- Newell, D.A.; Rait, G.; Thach, T.; Berdanier, B.; Draper, D.; Kubitschek, M.; Krimchansky, S. GPM Microwave Imager Design, Predicted Performance and Status. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IEEE International Symposium on Geoscience and Remote Sensing IGARSS, Honolulu, HI, USA, 25–30 July 2010; pp. 546–549. [Google Scholar] [CrossRef]
- Hou, A.Y. Precipitation estimation using combined active/passive sensor information within the GPM framework. In Proceedings of the ECMWF-JCSDA Workshop on Assimilating Satellite Observations of Clouds and Precipitation into NWP Models, ECMWF, Reading, UK, 15–17 June 2010; pp. 69–78. [Google Scholar]
- Seto, S.; Iguchi, T. Applicability of the Iterative Backward Retrieval Method for the GPM DualFrequency Precipitation Radar. IEEE Trans. Geosci. Remote Sens. 2011, 9, 1827–1838. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multi-satellite rainfall analysis: Quasi-global, multi-year, combined-sensor rainfall estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Huffmann, G.; Bolvin, D. TRMM and Other Data Precipitation Rainfall Data Set Documentation. 2015. Available online: https://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7.pdf (accessed on 8 April 2015).
- Thies, B.; Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 2011, 18, 262–295. [Google Scholar] [CrossRef]
- McNally, T.; Bonavita, M.; Thépaut, J.-N. The Role of Satellite Data in the Forecasting of Hurricane Sandy. Mon. Weather. Rev. 2014, 142, 634–646. [Google Scholar] [CrossRef]
- Levizzani, V.; Amorati, R.; Meneguzzo, F. A Review of Satellite-Based Rainfall Estimation Methods. MUSIC—MUltiple-Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting Project, 2002. Technical Report, of the Research Project MUSIC-Multiple Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting, Deliverable 6.1. MUSIC—EVK1-CT-2000-00058, 04/02/2002. Available online: https://www.researchgate.net/publication/252272255_A_Review_of_Satellite_Based_Rainfall_Estimation_Methods (accessed on 30 May 2022).
- Levizanni, V.; Schmetz, J.; Lutz, H.L.; Kerkmann, J.; Alberoni, P.P.; Cervino, M. Precipitation estimations from geostationary orbit and prospects for METEOSAT Second Generation. Meteorol. Appl. 2001, 8, 23–41. [Google Scholar] [CrossRef]
- Sehad, M.; Ameur, S. A multilayer perceptron and multiclass support vector machine based high accuracy technique for daily rainfall estimation from MSG SEVIRI data. Adv. Space Res. 2020, 66, 1250–1262. [Google Scholar] [CrossRef]
- Lazri, M.; Labadi, K.; Brucker, J.M.; Ameur, S. Improving satellite rainfall estimation from MSG data in Northern Algeria by using a multi-classifier model based on machine learning. J. Hydrol. 2020, 584, 124705. [Google Scholar] [CrossRef]
- Bouaita, B.; Moussaoui, A.; Bachari, N.E.I. Rainfall estimation from MSG images using fuzzy association rules. J. Intell. Fuzzy Syst. 2019, 37, 1357–1369. [Google Scholar] [CrossRef]
- Tapiador, F.J.; Marcos, C.; Sancho, M.J. The Convective Rainfall Rate from Cloud Physical Properties Algorithm for Meteosat Second-Generation Satellites: Microphysical Basis and Intercomparisons using an Object-Based Method. Remote Sens. 2019, 11, 527. [Google Scholar] [CrossRef]
- Turini, N.; Thies, B.; Bendix, J. Estimating High Spatio-Temporal Resolution Rainfall from MSG1 and GPM IMERG Based on Machine Learning: Case Study of Iran. Remote Sens. 2019, 11, 2307. [Google Scholar] [CrossRef]
- Kumah, K.K.; Hoedjes, C.B.J.; David, N.; Maathuis, H.P.B.; Gao, H.O.; Bob, Z.S. Combining MWL and MSG SEVIRI Satellite Signals for Rainfall Detection and Estimation. Atmosphere 2020, 11, 884. [Google Scholar] [CrossRef]
- Ouallouche, F.; Lazri, M.; Ameur, S. Improvement of rainfall estimation from MSG data using Random Forests classification and regression. Atmos. Res. 2018, 21, 62–72. [Google Scholar] [CrossRef]
- Sist, M.; Schiavon, G.; Del Frate, F. A New Data Fusion Neural Network Scheme for Rainfall Retrieval Using Passive Microwave and Visible/Infrared Satellite Data. Appl. Sci. 2021, 11, 4686. [Google Scholar] [CrossRef]
- Bensafi, N.; Lazri, M.; Ameur, S. Novel WkNN-based technique to improve instantaneous rainfall estimation over the north of Algeria using the multispectral MSG SEVIRI imagery. J. Atmos. Sol. Terr. Phys. 2019, 183, 110–119. [Google Scholar] [CrossRef]
- EUMETSAT, H-SAF. Product Validation Report (PVR-03B) for product H03B. 2 May 2017, Technical Report, Doc.No: SAF/HSAF/PVR-03B. Available online: https://navigator.eumetsat.int/product/EO:EUM:DAT:0017 (accessed on 30 May 2022).
- Hatzianastassiou, N.; Katsoulis, B.D.; Prevmatikos, J.D.; Antakis, V. Spatial and Temporal Variation of Precipitation in Greece and Surrounding Regions Based on Global Precipitation Climatology Project Data. J. Clim. 2008, 21, 1349–1370. [Google Scholar] [CrossRef]
- Kotsias, G.; Lolis, C.J.; Hatzianastassiou, N.; Levizzani, V.; Bartzokas, A. On the connection between large-scale atmospheric circulation and winter GPCP precipitation over the Mediterranean region for the period 1980-2017. Atmos. Res. 2020, 233, 104714. [Google Scholar] [CrossRef]
- Bartzokas, A.; Kotroni, V.; Lagouvardos, K.; Lolis, C.J.; Gkikas, A.; Tsirogianni, M.I. Weather forecast in north-western Greece: RISKMED warnings and verification of MM5 model. Nat. Hazards Earth Syst. Sci. 2010, 10, 383–394. [Google Scholar] [CrossRef]
- Christofilakis, V.; Tatsis, G.; Votis, C.T.; Chronopoulos, S.K.; Kostarakis, P.; Lolis, C.J.; Bartzokas, A. Rainfall Measurements Due to Radio Frequency Signal Attenuation at 2 GHz. J. Signal Inf. Process. 2018, 9, 192–201. [Google Scholar] [CrossRef]
- Kolios, S.; Feidas, H. An automated nowcasting system of Mesoscale Convective Systems for the Mediterranean basin using Meteosat imagery. Part I: System description. Meteorol. Appl. 2011, 20, 287–295. [Google Scholar] [CrossRef]
- Kolios, S. Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves. Climate 2018, 6, 25. [Google Scholar] [CrossRef]
- Kolios, S.; Hatzianastassiou, N. Quantitative Aerosol Optical Depth detection during dust outbreaks from Meteosat imagery using an Artificial Neural Network model. Remote Sens. 2019, 11, 1022. [Google Scholar] [CrossRef]
- Delgado, G.; Machado, A.T.L.; Carlos, F.; Angelis, F.C.; Bottino, M.J.; Redaño, Á.; Lorente, J.; Gimeno, L.; Nieto, R. Basis for a Rainfall Estimation Technique Using IR–VIS Cloud Classification and Parameters over the Life Cycle of Mesoscale Convective Systems. J. Appl. Meteorol. Climatol. 2008, 47, 1500–1517. [Google Scholar] [CrossRef]
- Dhib, S.; Mannaerts, C.M.; Bargaoui, Z.; Retsios, V.; Maathuis, B.H.P. Evaluating the MSG satellite Multi-Sensor Precipitation Estimate for extreme rainfall monitoring over northern Tunisia. Weather Clim. Extrem. 2017, 16, 14–22. [Google Scholar] [CrossRef]
- Wang, C.; Xu, J.; Tang, G.; Yang, Y.; Hong, Y. Infrared Precipitation Estimation Using Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8612–8625. [Google Scholar] [CrossRef]
- Risyanto, F.; Lasmono, F.; Teguh, H.T. Himawari-8 rainfall estimation from infrared channels based on machine learning methods. AIP Conf. Proc. 2021, 2366, 050004. [Google Scholar] [CrossRef]
- Kolios, S.; Kalimeris, A. Study of Cloud Convection during the Mediterranean Tropical-Like Cyclones: The Medicane Case of September 2018. In Proceedings of the 15th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP), Ioannina, Greece, 27–30 September 2021. [Google Scholar]
- Kolios, S. A Satellite-Based Automated System to Detect and Forecast Cloud Storms Focused on the Protection of the Greek Agricultural Sector. In Proceedings of the 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment, Kavala, Greece, 17–20 September 2015. [Google Scholar]
- Kolios, S.; Feidas, H. An automated nowcasting system of mesoscale convective systems for the Mediterranean basin using Meteosat imagery. Part II: Verification statistics. Meteorol. Appl. 2012, 20, 296–307. [Google Scholar] [CrossRef]
- Latupapua, H.; Latupapua, A.; Wahab, A.; Alaydrus, M. Wireless Sensor Network Design for Earthquake’s and Landslide’s Early Warnings. Indones. J. Electr. Eng. Comput. Sci. 2018, 11, 437–445. [Google Scholar] [CrossRef]
- Sindosi, O.A.; Bartzokas, A.; Kotroni, V.; Lagouvardos, K. Verification of precipitation forecasts of MM5 model over Epirus, NW Greece, for various convective parameterization schemes. Nat. Hazards Earth Syst. Sci. 2012, 12, 1393–1405. [Google Scholar] [CrossRef]
ID Number | Station Name | Latitude/Longitude | Altitude (m) |
---|---|---|---|
1 | University of Ioannina | 39°37′10″ N/20°50′50″ E | 488 |
2 | Kalpaki | 39°53′15″ N/20°37′23″ E | 404 |
3 | Trapeza | 40°06′42″ N/20°45′24″ E | 790 |
4 | Metsovo | 39°46′10″ N/21°10′38″ E | 1285 |
5 | Vourgareli | 39°21′36″ N/21°11′08″ E | 679 |
6 | Stroggyli | 39°07′34″ N/20°48′49″ E | 5 |
7 | Paramythia | 39°25′48″ N/20°30′48″ E | 165 |
8 | Ammoudia | 39°14′01″ N/20°28′58″ E | 6 |
Channel (Band) | Spectral Interval (μm) | Spectral Center (μm) |
---|---|---|
5 | 5.35–7.15 | 6.2 |
6 | 6.85–7.85 | 7.3 |
7 | 8.30–9.10 | 8.7 |
9 | 9.80–11.8 | 10.8 |
10 | 11.0–13.0 | 12.0 |
Threshold Value | Ground-Based Measurements | ||
---|---|---|---|
Yes | No | ||
Algorithm Rain estimations | Yes | Hit (H) | False Alarm (FA) |
No | Miss (M) | Correct Negative (CN) |
Statistical Parameter | Equation |
---|---|
MAE (Mean Absolute Error) | |
ME (Mean Error) | |
RMSE (Root Mean Square Error) | |
CC (Correlation Coefficient) |
Statistical Parameter | Whole Dataset | Q90% (High Extremes) |
---|---|---|
MAE (mm/h) | 1.35 | 2.87 |
ME (mm/h) | −0.13 | 1.92 |
RMSE (mm/h) | 1.92 | 3.2 |
CC | 0.52 | 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolios, S.; Hatzianastassiou, N.; Lolis, C.J.; Bartzokas, A. Accuracy Assessment of a Satellite-Based Rain Estimation Algorithm Using a Network of Meteorological Stations over Epirus Region, Greece. Atmosphere 2022, 13, 1286. https://doi.org/10.3390/atmos13081286
Kolios S, Hatzianastassiou N, Lolis CJ, Bartzokas A. Accuracy Assessment of a Satellite-Based Rain Estimation Algorithm Using a Network of Meteorological Stations over Epirus Region, Greece. Atmosphere. 2022; 13(8):1286. https://doi.org/10.3390/atmos13081286
Chicago/Turabian StyleKolios, Stavros, Nikos Hatzianastassiou, Christos J. Lolis, and Aristides Bartzokas. 2022. "Accuracy Assessment of a Satellite-Based Rain Estimation Algorithm Using a Network of Meteorological Stations over Epirus Region, Greece" Atmosphere 13, no. 8: 1286. https://doi.org/10.3390/atmos13081286
APA StyleKolios, S., Hatzianastassiou, N., Lolis, C. J., & Bartzokas, A. (2022). Accuracy Assessment of a Satellite-Based Rain Estimation Algorithm Using a Network of Meteorological Stations over Epirus Region, Greece. Atmosphere, 13(8), 1286. https://doi.org/10.3390/atmos13081286