A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust
Abstract
:1. Introduction
1.1. Overview of Indoor Dust
1.2. Biogeological Processes That Cause the Loading of Outdoor Dust Particles with Biotic and Abiotic Factors That Impact Human Health
2. The Genesis and Health Effects of Indoor Dust
3. Toolkit to Assess the Complexity of Indoor Dust Environments
3.1. Overview on the Meta-Analysis of Indoor Dust Assessments
3.2. Representative Sampling of Indoor Dust Environments for Genomics/Transcriptomics and Chemical Analysis
3.3. Comprehensive Assessment of the Chemical Basis of Dust Particles and Surface Chemistry
3.4. Determination of Dust Allergens in Indoor Dust Samples and Assessment of Allergic Responses in Occupants Exposed to Dust Mite Allergens
3.5. Assessing the Microbial (Bacterial and Fungal) Communities Confined to the Indoor Environment
3.6. Sequencing of the Dust Virome for Viral Detection, Quantification and Diversity
3.7. Natural Exposures to Indoor Dust or In Vitro Interaction between Dust and Human Cells/Animal Models and the Change in the Cellular Transcriptome
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rintala, H.; Pitkäranta, M.; Täubel, M. Microbial communities associated with house dust. Adv. Appl. Microbiol. 2012, 78, 75–120. [Google Scholar] [PubMed]
- Colloff, M.J. Dust Mites; Springer Science & Business Media CSIRO Publishing, Collingwood, Australia & Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Fernandez, M.O.; Thomas, R.J.; Garton, N.J.; Andrew Hudson, A.; Allen Haddrell, A.; Reid, J.P. Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology. J. R. Soc. Interface 2019, 16, 20180779. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, P.M.; Humphrey, J.L.; Carlton, E.J.; Adgate, J.L.; Barton, K.E.; Root, E.D.; Miller, S.L. Impact of outdoor air pollution on indoor air quality in low-income homes during wildfire seasons. Int. J. Environ. Res. Public Health 2019, 16, 3535. [Google Scholar] [CrossRef] [PubMed]
- AAFA. Asthma and Allergy Foundation of America. Available online: https://www.aafa.org/dust-mite-allergy (accessed on 19 December 2021).
- Wallace, L.A.; Pellizzari, E.D.; Hartwell, T.D.; Whitmore, R.; Sparacino, C.; Zelon, H. Total exposure assessment methodology (team) study: Personal exposures, indoor-outdoor relationships, and breath levels of volatile organic compounds in new jersey. Environ. Int. 1986, 12, 369–387. [Google Scholar] [CrossRef]
- Peccia, J.; Kwan, S.E. Buildings, beneficial microbes, and health. Trends Microbiol. 2016, 24, 595–597. [Google Scholar] [CrossRef]
- Mayol, E.; Arrieta, J.M.; Jiménez, M.A.; Martínez-Asensio, A.; Garcias-Bonet, N.; Dachs, J.; González-Gaya, B.; Royer, S.; Benítez-Barrios, V.M.; Fraile-Nuez, E.; et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 2017, 8, 201. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Aalismail, N.A.; Ngugi, D.K.; Díaz-Rúa, R.; Alam, I.; Cusack, M.; Duarte, C.M. Functional metagenomic analysis of dust-associated microbiomes above the red sea. Sci. Rep. 2019, 9, 13741. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Wang, M.; Chen, H.; Yao, M. Microbial aerosol chemistry characteristics in highly polluted air. Sci. China Chem. 2019, 62, 1051–1063. [Google Scholar] [CrossRef]
- Bordenave, G. Louis Pasteur (1822–1895). Microbes Infect. 2003, 5, 553–560. [Google Scholar] [CrossRef]
- Behzad, H.; Mineta, K.; Gojobori, T. Global ramifications of dust and sandstorm microbiota. Genome Biol. Evol. 2018, 10, 1970–1987. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.E.; Bates, S.T.; Knights, D.; Lauber, C.L.; Stombaugh, J.; Knight, R.; Fierer, N. Microbial biogeography of public restroom surfaces. PLoS ONE 2011, 6, e28132. [Google Scholar] [CrossRef] [PubMed]
- Korves, T.M.; Piceno, Y.M.; Tom, L.M.; DeSantis, T.Z.; Jones, B.W.; Andersen, G.L.; Hwang, G.M. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. Indoor Air 2013, 23, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Wegienka, G.; Johnson, C.C.; Havstad, S.; Ownby, D.R.; Zoratti, E.M. Indoor pet exposure and the outcomes of total IgE and sensitization at age 18 years. J. Allergy Clin. Immunol. 2010, 126, 274–279.e5. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, K.E.; Johnson, C.C.; Ownby, D.R.; Cox, M.J.; Brodie, E.L.; Havstad, S.L.; Zoratti, E.M.; Woodcroft, K.J.; Bobbitt, K.R.; Wegienka, G.; et al. Man’s best friend? the effect of pet ownership on house dust microbial communities. J. Allergy Clin. Immunol. 2010, 126, 410–412.e3. [Google Scholar] [CrossRef] [PubMed]
- Vlahov, D.; Galea, S. Urbanization, urbanicity, and health. J. Urban Health 2002, 79, S1–S12. [Google Scholar] [CrossRef] [PubMed]
- Ager, B.P.; Tickner, J.A. The control of microbiological hazards associated with air-conditioning and ventilation systems. Ann. Occup. Hyg. 1983, 27, 341–358. [Google Scholar] [PubMed]
- Möritz, M.; Peters, H.; Nipko, B.; Rüden, H. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems. Int. J. Hyg. Environ. Health 2001, 203, 401–409. [Google Scholar] [CrossRef]
- Sarmadi, M.; Rahimi, S.; Rezaei, M.; Sanaei, D.; Dianatinasab, M. Air quality index variation before and after the onset of COVID-19 pandemic: A comprehensive study on 87 capitals, industrial and polluted cities of the world. Environ. Sci. Eur. 2021, 33, 134. [Google Scholar] [CrossRef] [PubMed]
- Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H. Particulate matter in the indoor air of classrooms—Exploratory results from Munich and surrounding area. Atmos. Environ. 2007, 41, 854–866. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, B.P.; Punia, M.; Singh, D.; Kumar, K.; Jain, V.K. Assessment of indoor air concentrations of VOCs and their associated health risks in the library of Jawaharlal Nehru University, New Delhi. Environ. Sci. Pollut. Res. 2014, 21, 2240–2248. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. What Is Particulate Matter?|Urban Environmental Program in New England; United States EPA: Washington, DC, USA, 2022. Available online: https://www3.epa.gov/region1/eco/uep/particulatematter.html (accessed on 13 December 2021).
- Econo Air. What Is Dust Made of and How Does It Affect Your Indoor Air Quality? Econo Air: Bakersfield, CA, USA, 2016; Available online: https://www.myeconoair.com/blog/2016/june/what-is-dust-made-of-and-how-does-it-affect-your/ (accessed on 19 December 2021).
- Dinasquet, J.; Bigeard, E.; Gazeau, F.; Azam, F.; Guieu, C.; Marañón, E.; Ridame, C.; Van Wambeke, F.; Obernosterer, I.; Baudoux, A.-C. Impact of dust addition on the microbial food web under present and future conditions of pH and temperature. Biogeosciences 2022, 19, 1303–1319. [Google Scholar] [CrossRef]
- Mayo Foundation for Medical Education and Research. Dust Mite Allergy; Mayo Clinic Arizona: Rochester, MN, USA, 2021; Available online: https://www.mayoclinic.org/diseases-conditions/dust-mites/symptoms-causes/syc-20352173 (accessed on 19 December 2021).
- Shan, Y.; Guo, J.; Fan, W.; Li, H.; Wu, H.; Song, Y.; Zhang, G. Modern urbanization has reshaped the bacterial microbiome profiles of house dust in domestic environments. World Allergy Organ. J. 2020, 13, 100452. [Google Scholar] [CrossRef] [PubMed]
- Nazaroff, W.W. Indoor bioaerosol dynamics. Indoor Air 2016, 26, 61–78. [Google Scholar] [CrossRef]
- Ludden, C.; Cormican, M.; Austin, B.; Morris, D. Rapid environmental contamination of a new nursing home with antimicrobial-resistant organisms preceding occupation by residents. J. Hosp. Infect. 2013, 83, 327–329. [Google Scholar] [CrossRef]
- Barberán, A.; Dunn, R.R.; Reich, B.J.; Pacifici, K.; Laber, E.B.; Menninger, H.L.; Morton, J.M.; Henley, J.B.; Leff, J.W.; Miller, S.L.; et al. The ecology of microscopic life in household dust. Proc. R. Soc. B Biol. Sci. 2015, 1814, 20151139. [Google Scholar] [CrossRef] [PubMed]
- Wallinga, M. Superbug Saga 6.0: Signs of a Worsening Threat to Kids; NRDC: New York, NY, USA, 2017; Available online: https://www.nrdc.org/experts/david-wallinga-md/superbug-saga-60-signs-worsening-threat-kids (accessed on 19 December 2021).
- Darus, F.M.; Nasir, R.A.; Sumari, S.M.; Ismail, Z.S.; Omar, N.A. Heavy metals composition of indoor dust in nursery schools building. Procedia-Soc. Behav. Sci. 2012, 38, 169–175. [Google Scholar] [CrossRef]
- Fu, X.; Norbäck, D.; Yuan, Q.; Li, Y.; Zhu, X.; Hashim, J.H.; Hashim, Z.; Ali, F.; Zheng, Y.W.; Lai, X.X.; et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ. Int. 2020, 138, 105664. [Google Scholar] [CrossRef]
- Banerjee, S.; Resch, Y.; Chen, K.W.; Swoboda, I.; Focke-Tejkl, M.; Blatt, K.; Novak, N.; Wickman, M.; van Hage, M.; Ferrara, R.; et al. Der p 11 is a major allergen for house dust mite-allergic patients suffering from atopic dermatitis. J. Investig. Dermatol. 2015, 135, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Biagtan, M.; Viswanathan, R.; Bush, R.K. Immunotherapy for house dust mite sensitivity: Where are the knowledge gaps? Curr. Allergy Asthma Rep. 2014, 14, 482. [Google Scholar] [CrossRef]
- Aggarwal, P.; Senthilkumaran, S. Dust Mite Allergy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK560718/ (accessed on 10 May 2022).
- Zhao, L.; Zhang, Y.; Zhang, S.; Zhang, L.; Lan, F. The effect of immunotherapy on cross-reactivity between house dust mite and other allergens in house dust mite -sensitized patients with allergic rhinitis. Expert Rev. Clin. Immunol. 2021, 17, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Shelley, B.P. Cerebral musings on environmental humanities, human transgression, and healthcare preparedness: Looking beyond the “streetlight effect” of the COVID-19 pandemic. Arch. Med. Health Sci. 2020, 8, 1. [Google Scholar] [CrossRef]
- Bunyan, D.; Ritchie, L.; Jenkins, D.; Coia, J.E. Respiratory and facial protection: A critical review of recent literature. J. Hosp. Infect. 2013, 85, 165–169. [Google Scholar] [CrossRef]
- Fernstrom, A.; Goldblatt, M. Aerobiology and its role in the transmission of infectious diseases. J. Pathog. 2013, 2013, 493960. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.A.; Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 2005, 3, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Taremi, M.; Khoshbaten, M.; Gachkar, L.; Ehsani Ardakani, M.; Zali, M. Hepatitis E virus infection in hemodialysis patients: A seroepidemiological survey in Iran. BMC Infect. Dis. 2005, 5, 36. [Google Scholar] [CrossRef]
- Pan, F.; Ye, T.; Sun, P.; Gui, S.; Liang, B.; Li, L.; Zheng, D.; Wang, J.; Hesketh, R.L.; Yang, L.; et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology 2020, 295, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.Y.; Yang, L.M.; Xia, J.J.; Fu, X.H.; Zhang, Y.Z. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J. Zhejiang Univ.-Sci. B 2020, 21, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Al Blooshi, L.S.; Ksiksi, T.S.; Aboelenein, M.; Gargoum, A.S. The Impact of Climate Change on Agricultural and Livestock Production and Groundwater Characteristics in Abu Dhabi, UAE. Nat. Environ. Pollut. Technol. 2020, 19, 1945–1956. [Google Scholar] [CrossRef]
- National Center of Meteorology/Ministry of Presidential Affairs. (Rep.). Dust Sources Affecting the United Arab Emirates; 2011. Available online: https://www.ncm.ae/ncm-publications/5?lang=ar#page/70 (accessed on 8 August 2021).
- Shan, Y.; Wu, W.; Fan, W.; Haahtela, T.; Zhang, G. House dust microbiome and human health risks. Int. Microbiol. 2019, 22, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Gosepath, J.; Amedee, R.G.; Mann, W.J. Nasal provocation testing as an international standard for evaluation of allergic and nonallergic rhinitis. Laryngoscope 2005, 115, 512–516. [Google Scholar] [CrossRef]
- Li, L.; Qian, J.; Zhou, Y.; Cui, Y. Domestic mite-induced allergy: Causes, diagnosis, and future prospects. Int. J. Immunopathol. Pharmacol. 2018, 32, 2058738418804095. [Google Scholar] [CrossRef]
- Kazemi-Shirazi, L.; Niederberger, V.; Linhart, B.; Lidholm, J.; Kraft, D.; Valenta, R. Recombinant marker allergens: Diagnostic gatekeepers for the treatment of allergy. Int. Arch. Allergy Immunol. 2002, 127, 259–268. [Google Scholar] [CrossRef]
- Viegas, C.; Pena, P.; Gomes, B.; Dias, M.; Aranha Caetano, L.; Viegas, S. Are In Vitro Cytotoxicity Assessments of Environmental Samples Useful for Characterizing the Risk of Exposure to Multiple Contaminants at the Workplace? A Systematic Review. Toxics 2022, 10, 72. [Google Scholar] [CrossRef]
- Preheim, S.P.; Perrotta, A.R.; Friedman, J.; Smilie, C.; Brito, I.; Smith, M.B.; Alm, E. Computational methods for high-throughput comparative analyses of natural microbial communities. Methods Enzymol. 2013, 531, 353–370. [Google Scholar]
- Adams, R.I.; Bateman, A.C.; Bik, H.M.; Meadow, J.F. Microbiota of the indoor environment: A meta-analysis. Microbiome 2015, 3, 49. [Google Scholar] [CrossRef]
- Prussin, A.J.; Marr, L.C. Sources of airborne microorganisms in the built environment. Microbiome 2015, 3, 78. [Google Scholar] [CrossRef]
- Hua, N.P.; Kobayashi, F.; Iwasaka, Y.; Shi, G.Y.; Naganuma, T. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia 2007, 23, 291–298. [Google Scholar] [CrossRef]
- Bürgmann, H.; Pesaro, M.; Widmer, F.; Zeyer, J. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 2001, 45, 7–20. [Google Scholar] [CrossRef]
- Roose-Amsaleg, C.L.; Garnier-Sillam, E.; Harry, M. Extraction and purification of microbial DNA from soil and sediment samples. Appl. Soil. Ecol. 2001, 18, 47–60. [Google Scholar] [CrossRef]
- Luna, G.M.; Dell’Anno, A.; Danovaro, R. DNA extraction procedure: A critical issue for bacterial assessment in marine sediments. Environ. Microbiol. 2006, 8, 308–320. [Google Scholar] [CrossRef]
- Robe, P.; Nalin, R.; Capellano, C.; Vogel, T.M. Extraction of DNA from soil. Eur. J. Soil Biol. 2003, 39, 183–190. [Google Scholar] [CrossRef]
- de Lipthay, R.; Enzinger, C.; Johnsen, K.; Aamand, J.; Sørensen, S.J. Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 2004, 36, 1607–1614. [Google Scholar] [CrossRef]
- Cha, S.; Srinivasan, S.; Jang, J.H.; Lee, D.; Lim, S.; Kim, K.S. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event. PLoS ONE 2017, 12, e0170693. [Google Scholar] [CrossRef]
- Ogram, A. Soil moleular microbial ecology at age 20: Methodological challenges for the future. Soil Biol. Biochem. 2000, 32, 1499–1504. [Google Scholar] [CrossRef]
- Mardis, E.R. The impact of next-generation sequencing technology on genetics. Trends Genet. 2008, 24, 133–141. [Google Scholar] [CrossRef]
- Nielsen, U.N.; Wall, D.H. The future of soil invertebrate communities in polar regions: Different climate change responses in the Arctic and Antarctic. Ecol. Lett. 2013, 16, 409–419. [Google Scholar] [CrossRef]
- Taberlet, P.; Prud’Homme, S.M.; Campione, E.; Roy, J.; Miquel, C.; Shehzad, W.; Gielly, L.; Rioux, D.; Choler, P.; Clement, J.C. Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. Mol. Ecol. 2012, 21, 1816–1820. [Google Scholar] [CrossRef]
- Moelling, K.; Broecker, F. Air microbiome and pollution: Composition and potential effects on human health, including SARS coronavirus infection. J. Environ. Public Health 2020, 2020, 1646943. [Google Scholar] [CrossRef]
- Göller, P.C.; Haro-Moreno, J.M.; Rodriguez-Valera, F.; Loessner, M.J.; Gómez-Sanz, E. Uncovering a hidden diversity: Optimized protocols for the extraction of dsDNA bacteriophages from soil. Microbiome 2020, 8, 17. [Google Scholar] [CrossRef]
- Chiu, C.Y. Viral pathogen discovery. Curr. Opin. Microbiol. 2013, 16, 468–478. [Google Scholar] [CrossRef]
- Breitbart, M.; Hewson, I.; Felts, B.; Mahaffy, J.M.; Nulton, J.; Salamon, P.; Rohwer, F. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 2003, 185, 6220–6223. [Google Scholar] [CrossRef]
- Chibani-Chennoufi, S.; Bruttin, A.; Dillmann, M.L.; Brüssow, H. Phage-host interaction: An ecological perspective. J. Bacteriol. 2004, 186, 3677–3686. [Google Scholar] [CrossRef]
- Wommack, K.E.; Colwell, R.R. Virioplankton: Viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 2000, 64, 69–114. [Google Scholar] [CrossRef]
- Gorski, A.; Dabrowska, K.; Switala-Jeleń, K.; Nowaczyk, M.; Weber-Dabrowska, B.; Boratynski, J.; Wietrzyk, J.; Opolski, A. New insights into the possible role of bacteriophages in host defense and disease. Med. Immunol. 2003, 2, 2. [Google Scholar] [CrossRef]
- Brüssow, H.; Canchaya, C.; Hardt, W.D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef]
- Rohwer, F.; Thurber, R.V. Viruses manipulate the marine environment. Nature 2009, 459, 207–212. [Google Scholar] [CrossRef]
- Fuhrman, J.A. Marine viruses and their biogeochemical and ecological effects. Nature 1999, 399, 541–548. [Google Scholar] [CrossRef]
- Wommack, K.E.; Ravel, J.; Hill, R.T.; Colwell, R.R. Hybridization analysis of Chesapeake Bay virioplankton. Appl. Environ. Microbiol. 1999, 65, 241–250. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazzal, Y.; Howari, F.M.; Yaslam, A.; Iqbal, J.; Maloukh, L.; Ambika, L.K.; Al-Taani, A.A.; Ali, I.; Othman, E.M.; Jamal, A.; et al. A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust. Atmosphere 2022, 13, 1276. https://doi.org/10.3390/atmos13081276
Nazzal Y, Howari FM, Yaslam A, Iqbal J, Maloukh L, Ambika LK, Al-Taani AA, Ali I, Othman EM, Jamal A, et al. A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust. Atmosphere. 2022; 13(8):1276. https://doi.org/10.3390/atmos13081276
Chicago/Turabian StyleNazzal, Yousef, Fares M. Howari, Aya Yaslam, Jibran Iqbal, Lina Maloukh, Lakshmi Kesari Ambika, Ahmed A. Al-Taani, Ijaz Ali, Eman M. Othman, Arshad Jamal, and et al. 2022. "A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust" Atmosphere 13, no. 8: 1276. https://doi.org/10.3390/atmos13081276
APA StyleNazzal, Y., Howari, F. M., Yaslam, A., Iqbal, J., Maloukh, L., Ambika, L. K., Al-Taani, A. A., Ali, I., Othman, E. M., Jamal, A., & Naseem, M. (2022). A Methodological Review of Tools That Assess Dust Microbiomes, Metatranscriptomes and the Particulate Chemistry of Indoor Dust. Atmosphere, 13(8), 1276. https://doi.org/10.3390/atmos13081276