Health Exposure Assessment of Firefighters Caused by PAHs in PM4 and TSP after Firefighting Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. PM Sampling
2.3. Chemical Analysis
2.4. Health Risk Analysis
2.5. Calculations and Data Analysis
3. Results and Discussion
3.1. PM Concentrations
3.2. PAH Concentration
3.3. Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nisbet, I.C.T.; LaGoy, P.K. Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Slezakova, K.; Pires, J.C.M.; Castro, D.; Alvim-Ferraz, M.C.M.; Delerue-Matos, C.; Morais, S.; Pereira, M.C. PAH Air Pollution at a Portuguese Urban Area: Carcinogenic Risks and Sources Identification. Environ. Sci. Pollut. Res. 2013, 20, 3932–3945. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Health Effects Assessement Summary Tables; Office of Research and Development, US Environmental Protection Agency: Washington, DC, USA, 1993. [Google Scholar]
- IARC. IARC Monographs on Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, Fance, 2010. [Google Scholar]
- Hwang, J.; Xu, C.; Agnew, R.J.; Clifton, S.; Malone, T.R. Health Risks of Structural Firefighters from Exposure to Polycyclic Aromatic Hydrocarbons: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4209. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.D.; Bertke, S.; Dahm, M.M.; Yiin, J.H.; Kubale, T.L.; Hales, T.R.; Baris, D.; Zahm, S.H.; Beaumont, J.J.; Waters, K.M.; et al. Exposure-Response Relationships for Select Cancer and Non-Cancer Health Outcomes in a Cohort of Us Firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup. Environ. Med. 2015, 72, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Casjens, S.; Brüning, T.; Taeger, D. Cancer Risks of Firefighters: A Systematic Review and Meta-Analysis of Secular Trends and Region-Specific Differences. Int. Arch. Occup. Environ. Health 2020, 93, 839–852. [Google Scholar] [CrossRef]
- LeMasters, G.K.; Genaidy, A.M.; Succop, P.; Deddensy, J.; Sobeih, T.; Barriera-Viruet, H.; Dunning, K.; Lockey, J.; Deddens, J.; Sobeih, T.; et al. Cancer Risk among Firefighters: A Review and Meta-Analysis of 32 Studies. J. Occup. Environ. Med. 2006, 48, 1189–1202. [Google Scholar] [CrossRef]
- Soteriades, E.S.; Kim, J.; Christophi, C.A.; Kales, S.N. Cancer Incidence and Mortality in Firefighters: A State-of-the-Art Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2019, 20, 3221–3231. [Google Scholar] [CrossRef] [PubMed]
- Jalilian, H.; Ziaei, M.; Weiderpass, E.; Rueegg, C.S.; Khosravi, Y.; Kjaerheim, K. Cancer Incidence and Mortality among Firefighters. Int. J. Cancer 2019, 145, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Mayer, A.; Bertke, S.; Kerber, S.; Smith, D.; Horn, G.P. Understanding Airborne Contaminants Produced by Different Fuel Packages during Training Fires. J. Occup. Environ. Hyg. 2019, 16, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Slezakova, K.; Fernandes, A.; Teixeira, J.P.; Delerue-Matos, C.; do Carmo Pereira, M.; Morais, S. Occupational Exposure of Firefighters to Polycyclic Aromatic Hydrocarbons in Non-Fire Work Environments. Sci. Total Environ. 2017, 592, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Slezakova, K.; Magalhães, C.P.; Fernandes, A.; Teixeira, J.P.; Delerue-Matos, C.; do Carmo Pereira, M.; Morais, S. Individual and Cumulative Impacts of Fire Emissions and Tobacco Consumption on Wildland Firefighters’ Total Exposure to Polycyclic Aromatic Hydrocarbons. J. Hazard. Mater. 2017, 334, 10–20. [Google Scholar] [CrossRef]
- Keir, J.L.A.; Akhtar, U.S.; Matschke, D.M.J.; White, P.A.; Kirkham, T.L.; Chan, H.M.; Blais, J.M. Polycyclic Aromatic Hydrocarbon (PAH) and Metal Contamination of Air and Surfaces Exposed to Combustion Emissions during Emergency Fire Suppression: Implications for Firefighters’ Exposures. Sci. Total Environ. 2020, 698, 134211. [Google Scholar] [CrossRef]
- Dat, N.D.; Chang, M.B. Review on Characteristics of PAHs in Atmosphere, Anthropogenic Sources and Control Technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive Review of Polycyclic Aromatic Hydrocarbons in Water Sources, Their Effects and Treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Khillare, P.S. Profile of PAHs in the Inhalable Particulate Fraction: Source Apportionment and Associated Health Risks in a Tropical Megacity. Environ. Monit. Assess. 2013, 185, 1199–1213. [Google Scholar] [CrossRef]
- Samburova, V.; Zielinska, B.; Khlystov, A.; Harrison, R.M. Toxics Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17. [Google Scholar] [CrossRef]
- Bralewska, K.; Rakowska, J. Concentrations of Particulate Matter and Pm-Bound Polycyclic Aromatic Hydrocarbons Released during Combustion of Various Types of Materials and Possible Toxicological Potential of the Emissions: The Results of Preliminary Studies. Int. J. Environ. Res. Public Health 2020, 17, 3202. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Wang, J.; Zhuo, S.; Zhong, Q.; Wang, W.; Chen, Y.; Wang, Z.; Mao, K.; Huang, Y.; Shen, G.; et al. Emissions of Particulate PAHs from Solid Fuel Combustion in Indoor Cookstoves. Sci. Total Environ. 2021, 771, 145411. [Google Scholar] [CrossRef] [PubMed]
- Rakowska, J.; Kuskowska, K.; Rogula-Kozłowska, W. Inhalation Exposure to Particulate Matter in a Work Environment of Firefighters. MATEC Web Conf. 2018, 247, 00039. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Bralewska, K.; Jureczko, I. BTEXS Concentrations and Exposure Assessment in a Fire Station. Atmosphere 2020, 11, 470. [Google Scholar] [CrossRef]
- Wentworth, G.R.; Aklilu, Y.A.; Landis, M.S.; Hsu, Y.M. Impacts of a Large Boreal Wildfire on Ground Level Atmospheric Concentrations of PAHs, VOCs and Ozone. Atmos. Environ. 2018, 178, 19–30. [Google Scholar] [CrossRef]
- Shon, Z.H.; Kang, M.; Park, G.; Bae, M. Impact of Temporary Emission Reduction from a Large-Scale Coal-Fired Power Plant on Air Quality. Atmos. Environ. X 2020, 5, 100056. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J. Global Impact of Landscape Fire Emissions on Surface Level PM2.5 Concentrations, Air Quality Exposure and Population Mortality. Atmos. Environ. 2021, 252, 118210. [Google Scholar] [CrossRef]
- Świt, P.; Orzeł, J.; Maślanka, S. Monitoring of PAHs in Simulated Natural and Artificial Fires by HPLC-DAD-FLD with the Application of Multi-Component Integrated Calibration Method to Improve Quality of Analytical Results. Meas. J. Int. Meas. Confed. 2022, 196, 111242. [Google Scholar] [CrossRef]
- Fent, K.W.; Eisenberg, J.; Snawder, J.; Sammons, D.; Pleil, J.D.; Stiegel, M.A.; Mueller, C.; Horn, G.P.; Dalton, J. Systemic Exposure to PAHs and Benzene in Firefighters Suppressing Controlled Structure Fires. Ann. Occup. Hyg. 2014, 58, 830. [Google Scholar] [CrossRef]
- Alexander, B.M.; Baxter, C.S. Flame-Retardant Contamination of Firefighter Personal Protective Clothing—A Potential Health Risk for Firefighters. J. Occup. Environ. Hyg. 2016, 13, D148–D155. [Google Scholar] [CrossRef]
- Banks, A.P.W.; Wang, X.; Engelsman, M.; He, C.; Osorio, A.F.; Mueller, J.F. Assessing Decontamination and Laundering Processes for the Removal of Polycyclic Aromatic Hydrocarbons and Flame Retardants from Firefighting Uniforms. Environ. Res. 2021, 194, 110616. [Google Scholar] [CrossRef]
- Banks, A.P.W.; Thai, P.; Engelsman, M.; Wang, X.; Osorio, A.F.; Mueller, J.F. Characterising the Exposure of Australian Firefighters to Polycyclic Aromatic Hydrocarbons Generated in Simulated Compartment Fires. Int. J. Hyg. Environ. Health 2021, 231, 113637. [Google Scholar] [CrossRef]
- Baxter, C.S.; Hoffman, J.D.; Knipp, M.J.; Reponen, T.; Haynes, E.N. Exposure of Firefighters to Particulates and Polycyclic Aromatic Hydrocarbons. J. Occup. Environ. Hyg. 2014, 11, 37–41. [Google Scholar] [CrossRef]
- Vuković, G.; Aničić Uroševic, M.; Razumenić, I.; Kuzmanoski, M.; Pergal, M.; Škrivanj, S.; Popović, A. Air Quality in Urban Parking Garages (PM10, Major and Trace Elements, PAHs): Instrumental Measurements vs. Active Moss Biomonitoring. Atmos. Environ. 2013, 85, 31–40. [Google Scholar] [CrossRef]
- Payne, R.L.; Alaves, V.M.; Larson, R.R.; Sleeth, D.K. An Evaluation of Diesel Particulate Matter in Fire Station Vehicle Garages and Living Quarters. J. Chem. Health Saf. 2016, 23, 26–31. [Google Scholar] [CrossRef]
- Dubocq, F.; Bjurlid, F.; Ydstål, D.; Titaley, I.A.; Reiner, E.; Wang, T.; Almirall, X.O.; Kärrman, A. Organic Contaminants Formed during Fire Extinguishing Using Different Firefighting Methods Assessed by Nontarget Analysis. Environ. Pollut. 2020, 265. [Google Scholar] [CrossRef]
- Rossbach, B.; Wollschläger, D.; Letzel, S.; Gottschalk, W.; Muttray, A. Internal Exposure of Firefighting Instructors to Polycyclic Aromatic Hydrocarbons (PAH) during Live Fire Training. Toxicol. Lett. 2020, 331, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Pukkala, E.; Martinsen, J.I.; Weiderpass, E.; Kjaerheim, K.; Lynge, E.; Tryggvadottir, L.; Sparén, P.; Demers, P.A. Cancer Incidence among Firefighters: 45 Years of Follow-up in Five Nordic Countries. Occup. Environ. Med. 2014, 71, 398–404. [Google Scholar] [CrossRef]
- Navarro, K.M.; Kleinman, M.T.; Mackay, C.E.; Reinhardt, T.E.; Balmes, J.R.; Broyles, G.A.; Ottmar, R.D.; Naher, L.P.; Domitrovich, J.W. Wildland Firefighter Smoke Exposure and Risk of Lung Cancer and Cardiovascular Disease Mortality. Environ. Res. 2019, 173, 462–468. [Google Scholar] [CrossRef]
- Sparer, E.H.; Prendergast, D.P.; Apell, J.N.; Bartzak, M.R.; Wagner, G.R.; Adamkiewicz, G.; Hart, J.E.; Sorensen, G. Assessment of Ambient Exposures Firefighters Encounter While at the Fire Station. J. Occup. Environ. Med. 2017, 59, 1017–1023. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Majder-Łopatka, M.; Jureczko, I.; Ciuka-Witrylak, M.; Łukaszek-Chmielewska, A.; Majder-Lopatka, M.; Jureczko, I.; Ciuka-Witrylak, M.; Lukaszek-Chmielewska, A.; Majder-Łopatka, M.; et al. Polycyclic Aromatic Hydrocarbons in the Firefighter Workplace: The Results from the First in Poland Short-Term Measuring Campaign. E3S Web Conf. 2018, 45, 00075. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Bralewska, K.; Rogula-Kopiec, P.; Makowski, R.; Majder-Łopatka, M.; Łukawski, A.; Brandyk, A.; Majewski, G. Respirable Particles and Polycyclic Aromatic Hydrocarbons at Two Polish Fire Stations. Build. Environ. 2020, 184, 107255. [Google Scholar] [CrossRef]
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Geer Wallace, M.A.; Kerber, S.; Smith, D.L.; et al. Firefighters’ and Instructors’ Absorption of PAHs and Benzene during Training Exercises. Int. J. Hyg. Environ. Health 2019, 222, 991–1000. [Google Scholar] [CrossRef]
- Wang, W.; Simonich, S.L.M.; Wang, W.; Giri, B.; Zhao, J.; Xue, M.; Cao, J.; Lu, X.; Tao, S. Atmospheric Polycyclic Aromatic Hydrocarbon Concentrations and Gas/Particle Partitioning at Background, Rural Village and Urban Sites in the North China Plain. Atmos. Res. 2011, 99, 197–206. [Google Scholar] [CrossRef]
- Maharaj Kumari, K.; Lakhani, A. PAHs in Gas and Particulate Phases: Measurement and Control; Springer: Singapore, 2018; ISBN 9789811073328. [Google Scholar]
- Zhang, B.; Sun, J.; Jiang, N.; Zeng, Y.; Zhang, Y.; He, K.; Xu, H.; Liu, S.; Hang Ho, S.S.; Qu, L.; et al. Emission Factors, Characteristics, and Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons in PM2.5 Emitted for the Typical Solid Fuel Combustions in Rural Guanzhong Plain, China. Environ. Pollut. 2021, 286, 117573. [Google Scholar] [CrossRef]
- ACGIH. Threshold Limit Values (TLVs) and Biological Exposure Indices (BEIs); American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2022. [Google Scholar]
- Kim, K.-H.; Kabir, E.; Kabir, S. A Review on the Human Health Impact of Airborne Particulate Matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Brown, J.S.; Gordon, T.; Price, O.; Asgharian, B. Thoracic and Respirable Particle Definitions for Human Health Risk Assessment. Part. Fibre Toxicol. 2013, 10, 12. [Google Scholar] [CrossRef]
- EN 481; Workplace Atmospheres. Size Fraction Definitions for Measurement of Airborne Particles. Comite Europeen de Normalisation: Brussels, Belgium, 1993.
- Keith, L.H. The Source of U.S. EPA’s Sixteen PAH Priority Pollutants. Polycycl. Aromat. Compd. 2015, 35, 147–160. [Google Scholar] [CrossRef]
- Clement Associates, I. Comparative Potency Approach for Estimating the Cancer Risk Associated with Exposure to Mixtures of Polycyclic Aromatic Hydrocarbons (Interim Final Report); Prep. EPA under Contract 68-02-4403; ICF-Clement Associate for US Environmental Protection Agency: Fairfax, VA, USA, 1988. [Google Scholar]
- Krewski, D.; Thorslund, T.; Withey, J. Carcinogenic Risk Assessment of Complex Mixtures. Toxicol. Ind. Health 1989, 5, 851–867. [Google Scholar] [CrossRef]
- Chen, W.; Han, J.; Qin, L.; Furuuchi, M.; Mitsuhiko, H. The Emission Characteristics of PAHs during Coal and Sewage Sludge Co-Combustion in a Drop Tube Furnace. Aerosol Air Qual. Res. 2014, 14, 1160–1167. [Google Scholar] [CrossRef]
- Adesina, O.A.; Nwogu, A.S.; Sonibare, J.A. Indoor Levels of Polycyclic Aromatic Hydrocarbons (PAHs) from Environment Tobacco Smoke of Public Bars. Ecotoxicol. Environ. Saf. 2021, 208, 111604. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, L.; Huang, Q.; Zhang, W.; Duan, S.; Gao, H.; Wang, W. PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrated-PAHs (NPAHs) Emitted by Gasoline Vehicles: Characterization and Health Risk Assessment. Sci. Total Environ. 2020, 727, 138631. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Amaral, S.S.; de Carvalho, J.A.; Costa, M.A.M.; Pinheiro, C. An Overview of Particulate Matter Measurement Instruments. Atmosphere 2015, 6, 1327–1345. [Google Scholar] [CrossRef]
- Fent, K.W.; Evans, D.E.; Booher, D.; Pleil, J.D.; Stiegel, M.A.; Horn, G.P.; Dalton, J. Volatile Organic Compounds Off-Gassing from Firefighters Personal Protective Equipment Ensembles after Use. J. Occup. Environ. Hyg. 2015, 12, 404–414. [Google Scholar] [CrossRef] [PubMed]
- GIOŚ. Chief Inspectorate for Environmental Protection. Measurement Data Archives; GIOŚ: Warsaw, Poland, 2022. [Google Scholar]
- Li, X.; Kong, S.; Yin, Y.; Li, L.; Yuan, L.; Li, Q.; Xiao, H.; Chen, K. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing. Atmos Res. 2016, 174–175, 85–96. [Google Scholar] [CrossRef]
PAH | Nisbet & LaGoy [1] | EPA [3] | Clement Associates [51,52] | Chen et al. [53] |
---|---|---|---|---|
Dibenzo[a,h]anthracene | 5 | 1 | 1.11 | 0.69 |
Benzo[a]pyrene | 1 | 1 | 1 | 1 |
Benzo[a]anthracene | 0.1 | 0.1 | 0.145 | 0.013 |
Benzo[b]fluoranthene | 0.1 | 0.1 | 0.140 | 0.08 |
Benzo[k]fluoranthene | 0.1 | 0.1 | 0.066 | 0.004 |
Indeno[l,2,3-cd]pyrene | 0.1 | 0.1 | 0.232 | 0.017 |
Anthracene | 0.01 | 0.01 | ||
Benzo[g,h,i]perylene | 0.01 | 0.01 | 0.022 | |
Chrysene | 0.01 | 0.01 | 0.0044 | 0.001 |
Acenaphthene | 0.001 | 0.001 | ||
Acenaphthylene | 0.001 | 0.001 | ||
Fluoranthene | 0.001 | 0.001 | ||
Fluorene | 0.001 | 0.001 | ||
Naphthalene | 0.001 | 0.001 | ||
Phenanthrene | 0.001 | 0.001 | ||
Pyrene | 0.001 | 0.001 | 0.081 |
Month | PM1 | PM2.5 | PM4 | PM7 | PM10 | TSP |
---|---|---|---|---|---|---|
Mean value | ||||||
August | 41.5 | 65.7 | 104.6 | 112.0 | 121.3 | 136.2 |
October | 52.4 | 81.3 | 85.8 | 88.9 | 90.5 | 93.9 |
November | 36.1 | 51.9 | 55.3 | 58.2 | 61.2 | 64.1 |
December | 22.1 | 31.4 | 34.9 | 37.9 | 40.5 | 44.7 |
Minimum value | ||||||
August | 10.4 | 14.6 | 28.8 | 32.7 | 37.2 | 46.4 |
October | 18.4 | 25.7 | 27.2 | 29.0 | 29.3 | 29.9 |
November | 16.6 | 18.3 | 19.4 | 20.2 | 20.2 | 20.2 |
December | 2.1 | 5.0 | 6.8 | 7.4 | 8.1 | 8.6 |
Maximum value | ||||||
August | 71.0 | 139.7 | 324.7 | 344.6 | 384.7 | 420.7 |
October | 76.5 | 145.3 | 158.6 | 163.4 | 169.8 | 240.8 |
November | 89.1 | 280.2 | 308.5 | 310.7 | 311.0 | 313.2 |
December | 61.9 | 123.3 | 138.3 | 153.6 | 176.8 | 246.1 |
Month | Value of PM2.5 Concentration, µg/m3 | Value of PM10 Concentration, µg/m3 | ||||
---|---|---|---|---|---|---|
Minimum | Maximum | Mean | Minimum | Maximum | Mean | |
August | 3.5 | 27.5 | 9.2 | 4.9 | 27.7 | 13.2 |
October | 3.2 | 36.3 | 18.2 | 8.8 | 40 | 23.4 |
November | 3.8 | 63.6 | 25.9 | 6.9 | 73.3 | 28.3 |
December | 6.3 | 57.1 | 9.0 | 7.5 | 68.7 | 31.4 |
28/29.10.21 | 10/11.11.21 | 1/2.12.21 | ||||
---|---|---|---|---|---|---|
PAH | TSP | PM4 | TSP | PM4 | TSP | PM4 |
Dibenzo[a,h]anthracene | 5.21 | 1.58 | 1.74 | 1.58 | 4.17 | 1.58 |
Benzo[a]pyrene | 2.08 | 1.58 | 1.74 | 2.21 | 4.51 | 7.89 |
Benzo[a]anthracene | 130.56 | 1.58 | 1.74 | 1.58 | 108.33 | 1.58 |
Benzo[b]fluoranthene | 2.08 | 1.58 | 1.74 | 2.21 | 4.51 | 1.58 |
Benzo[k]fluoranthene | 1.74 | 1.58 | 1.74 | 1.58 | 1.74 | 1.58 |
Indeno[1,2,3-cd]pyrene | 21.53 | 1.58 | 1.74 | 1.58 | 15.28 | 1.58 |
Anthracene | 20.49 | 20.52 | 24.65 | 4.10 | 1.74 | 1.58 |
Benzo[g,h,i]perylene | 1.74 | 1.58 | 1.74 | 1.58 | 1.74 | 1.58 |
Chrysene | 1.74 | 1.58 | 1.74 | 1.58 | 1.74 | 1.58 |
Acenaphthylene | 1.74 | 1.58 | 1.74 | 1.58 | 1.74 | 1.58 |
Fluoranthene | 1.74 | 39.77 | 58.68 | 1.58 | 35.42 | 45.77 |
Fluorene | 1.74 | 41.67 | 1.74 | 1.58 | 43.06 | 1.58 |
Naphthalene | 1.74 | 1.58 | 1.74 | 1.58 | 1.74 | 1.58 |
Phenanthrene | 1.74 | 39.77 | 58.68 | 1.58 | 35.42 | 45.77 |
Pyrene | 1.74 | 37.56 | 1.74 | 30.93 | 1.74 | 1.58 |
Sum of PAHs | 197.57 | 195.08 | 162.85 | 56.82 | 262.85 | 118.37 |
Diagnostic Ratios * | 28/29.10.21 | 10/11.11.21 | 1/2.12.21 | |||
---|---|---|---|---|---|---|
TSP | PM4 | TSP | PM4 | TSP | PM4 | |
PAHs(3 + 4)/PAHs(5 + 6) | 4.70 | 19.43 | 14.47 | 4.15 | 7.17 | 6.40 |
Ant/(Ant + Phe) | 0.92 | 0.34 | 0.30 | 0.72 | 0.05 | 0.03 |
Flt/(Flt + Pyr) | 0.50 | 0.51 | 0.97 | 0.05 | 0.95 | 0.97 |
BaA/(BaA + Chr) | 0.99 | 0.50 | 0.50 | 0.50 | 0.98 | 0.50 |
28/29.10.21 | 10/11.11.21 | 1/2.12.21 | ||||
---|---|---|---|---|---|---|
PAH | TSP | PM4 | TSP | PM4 | TSP | PM4 |
TEQ | 23.33 | 4.38 | 4.74 | 4.65 | 22.10 | 10.36 |
ILCR (×10−4) | 3.50 | 3.45 | 2.88 | 1.01 | 4.65 | 2.10 |
HQ | 0.43 | 0.42 | 0.35 | 0.12 | 0.57 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakowska, J.; Rachwał, M.; Walczak, A. Health Exposure Assessment of Firefighters Caused by PAHs in PM4 and TSP after Firefighting Operations. Atmosphere 2022, 13, 1263. https://doi.org/10.3390/atmos13081263
Rakowska J, Rachwał M, Walczak A. Health Exposure Assessment of Firefighters Caused by PAHs in PM4 and TSP after Firefighting Operations. Atmosphere. 2022; 13(8):1263. https://doi.org/10.3390/atmos13081263
Chicago/Turabian StyleRakowska, Joanna, Marzena Rachwał, and Agata Walczak. 2022. "Health Exposure Assessment of Firefighters Caused by PAHs in PM4 and TSP after Firefighting Operations" Atmosphere 13, no. 8: 1263. https://doi.org/10.3390/atmos13081263
APA StyleRakowska, J., Rachwał, M., & Walczak, A. (2022). Health Exposure Assessment of Firefighters Caused by PAHs in PM4 and TSP after Firefighting Operations. Atmosphere, 13(8), 1263. https://doi.org/10.3390/atmos13081263