Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Ground Reference Dataset
2.2.2. Satellite-Based Precipitation Product
2.3. Research Methods
2.3.1. Conventional Statistical Metrics
2.3.2. Categorical Indicators
3. Results
3.1. Evaluation at a Multi-Year Scale
3.2. Evaluation at a Seasonal Scale
3.3. Categorical Evaluation for Precipitation Occurrence and Volume
3.4. Contingency Evaluation
3.5. Evaluation over Typical Terrain Precipitation Area
4. Discussion
5. Conclusions
- (1)
- For the daily mean precipitation from 2016 to 2019, all SPPs with CC values around 0.9 (Figure 3) had the ability to capture the spatial distribution patterns of precipitation (Figure 2). Only the MSWEP could capture the terrain precipitation pattern well in the Yili River Valley area. PERSIANN-CDR underestimated precipitation in southeastern and southwestern China and performed the worst among the four SPPs, with relatively lower CC and higher RB and RMSE. Overall, GSMAP-gauge and GPM had the best performance in reproducing the spatial distribution pattern over mainland China.
- (2)
- Seasonally, all SPPs could reflect the seasonal distribution of precipitation over mainland China. GSMAP-gauge performed best in autumn and winter (Figure 5k,l), with the highest CC (0.94 and 0.97) and the lowest RMSE (0.47 and 0.18 mm/day). MSWEP performed better in spring (Figure 5e), with the lowest RB (−0.9%). It was found that GPM performed best in summer (Figure 5n), with the lowest RB (−0.9%). It is necessary to highlight the fact that all four selected SPPs tended to underestimate precipitation in summer (RB was negative) over mainland China.
- (3)
- Based on the results of the categorical evaluation, it was found that all four SPPs tended to detect fewer no-rain events than CPAP. GPM and GSMAP-gauge were closer to CPAP for precipitation detection with relatively high accuracy. For the percentage of precipitation without rainfall cases, GSMAP-gauge detected 65%, with the best performance compared to the CPAP of 70% (Figure 7). PERSIANN-CDR demonstrated a 30% error and had the worst performance in capturing precipitation events.
- (4)
- MSWEP with the highest POD and POTD outperformed the other SPPs. MSWEP and GSMAP-gauge exhibited the lowest FAR and the highest CSI percent during 1–6 and 6–128 mm/day, respectively. PERSIANN-CDR showed a lower ability in detecting heavy precipitation (R ≥ 64 mm/day) with a high FAR (up to 100%).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.; Ren, L.; Yong, B.; Yang, X.; Shi, L. Evaluation of high-resolution satellite precipitation products with surface rain gauge observations from Laohahe Basin in northern China. Water Sci. Eng. 2010, 3, 405–417. [Google Scholar]
- Chen, S.; Liu, H.; You, Y.; Mullens, E.; Hu, J.; Yuan, Y.; Huang, M.; He, L.; Luo, Y.; Zeng, X. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations. PLoS ONE 2014, 9, e89681. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Shao, Z.; Gao, T.; Zou, T.; Liu, J.; Yuan, H. Extreme precipitation event over the yellow sea western coast: Is there a trend? Quat. Int. 2017, 441, 1–17. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Yang, B.; Stepanian, P. Comprehensive evaluation of high-resolution satellite-based precipitation products over China. Atmosphere 2015, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the Han river basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Wan-Ru, H.; Pin-Yi, L.; Jie, H. Multiple timescale assessment of wet season precipitation estimation over Taiwan using the Persian family products. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102521. [Google Scholar]
- Jiang, S.; Ren, L.; Yong, B.; Yang, H.; Yang, X.; Fei, Y. Evaluation of latest TMPA and CMORPH precipitation products with independent rain gauge observation networks over high-latitude and low-latitude basins in China. Chin. Geogr. Sci. 2016, 26, 439–455. [Google Scholar] [CrossRef] [Green Version]
- Han, W.S.; Burian, S.J.; Shepherd, J.M. Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions. Nat. Hazards 2011, 56, 733–747. [Google Scholar] [CrossRef]
- Hong, Y.; Hsu, K.L.; Moradkhani, H.; Sorooshian, S. Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response. Water Resour. Res. 2006, 42, W08421. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite precipitation analysis (TMPA) and its utility in hydrologic prediction in the La Plata basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef] [Green Version]
- Turk, F.J.; Arkin, P.; Ebert, E.E.; Sapiano, M.R. Evaluating high-resolution precipitation products. Bull. Amer. Meteor. Soc. 2008, 89, 1911–1916. [Google Scholar] [CrossRef]
- Bharti, V.; Singh, C. Evaluation of error in TRMM 3b42v7 precipitation estimates over the Himalayan region. J. Geophys. Res. Atmos. 2015, 120, 12458–12473. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, S.; You, S.; Huang, Y.; Zhou, Q. Comprehensive evaluation of two successive V3 and V4 IMERG final run precipitation products over mainland China. Remote Sens. 2017, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, W.; Wang, X.; Lyu, J. Accuracy assessment of MSWEP over mainland China. Shuikexue Jinzhan/Adv. Water Sci. 2018, 29, 455–464. [Google Scholar]
- Tian, Y.; Peters-Lidard, C.D.; Adler, R.F.; Kubota, T.; Ushio, T. Evaluation of GSMaP precipitation estimates over the contiguous united states. J. Hydrometeorol. 2010, 11, 566–574. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Ndayisaba, F.; Liu, T.; Kurban, A.; De Maeyer, P. Systematical evaluation of satellite precipitation estimates over central Asia using an improved error-component procedure. J. Geophys. Res. Atmos. 2017, 122, 10906–10927. [Google Scholar] [CrossRef]
- Chaudhary, S.; Dhanya, C.T. Expanding contingency table for intensity and frequency based “true” detection of rainy events in precipitation datasets. Atmos. Res. 2020, 244, 105119. [Google Scholar] [CrossRef]
- Hamza, A.; Anjum, M.N.; Cheema, M.; Chen, X.; Gulakhmadov, A. Assessment of IMERG-v06, TRMM-3b42v7, SM2RAIN-ascat, and PERSIANN-CDR precipitation products over the Hindu Kush mountains of Pakistan, South Asia. Remote Sens. 2020, 12, 3871. [Google Scholar] [CrossRef]
- Mou, L.T.; Santo, H. Comparison of GPM IMERG, TMPA 3b42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar]
- Zhai, P.; Zhang, X.; Hui, W.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Lau, K.M. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western north pacific–east Asian monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Shi, L.; Yang, C.; Wei, L.; Jiang, S. Utility analysis of IMERG satellite precipitation product Forreal-time drought monitoring over the yellow river basin. Water Resour. Power 2021, 39, 9–11. [Google Scholar]
- Shen, Y.; Feng, M.; Zhang, H.; Gao, F. Interpolation methods of China daily precipitation data. J. Appl. Meteorol. Sci. 2010, 21, 279–286. [Google Scholar]
- Ren, L.; Wei, L.; Jiang, S.; Shi, J.; Yuan, F.; Zhang, L. Drought monitoring utility assessment of chirps and gleam satellite products in China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 146–154. [Google Scholar]
- Shen, Y.; Xiong, A. Validation and comparison of a new gauge-based precipitation analysis over mainland China. Int. J. Climatol. 2016, 36, 252–265. [Google Scholar] [CrossRef]
- Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.; Zhang, Z.; Shen, Y.; Hu, J. Similarity and difference of the two successive v6 and v7 TRMM Multisatellite precipitation analysis performance over China. J. Geophys. Res. Atmos. 2013, 118, 13060–013074. [Google Scholar] [CrossRef]
- Shen, Y.; Xiong, A.; Wang, Y.; Xie, P. Performance of high-resolution satellite precipitation products over China. J. Geophys. Res. Atmos. 2010, 115, 114. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Behrangi, A.; Hong, Y.; Ndayisaba, F.; Hu, J.; Stepanian, M.P. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos. Res. 2016, 176, 121–133. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Zhang, Y.; Chen, Q.; Wang, P.; Yang, H.; Yao, Y.; Cai, W. Comparison of two long-term and high-resolution satellite precipitation datasets in Xinjiang, China. Atmos. Res. 2018, 212, 150–157. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, B.; Yang, S.; Huang, Y.; Dong, G.; Bai, J.; Wang, Z. Systematical estimation of GPM-based global satellite mapping of precipitation products over China. Atmos. Res. 2018, 201, 206–217. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2014, 96, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Min, L.; Nzabarinda, V.; Bao, A.; Meng, X.; Li, Z. Assessment of three long-term satellite-based precipitation estimates against ground observations for drought characterization in northwestern China. Remote Sens. 2022, 14, 828. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Dan, B. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, A.; Dan, B.; Hsu, K.; Joyce, R.; Xie, P. Nasa Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG). Available online: https://storm.pps.eosdis.nasa.gov/storm/IMERG_ATBD_V4.pdf (accessed on 10 May 2022).
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3b42v7 rainfall products over southern Tibetan plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Kim, K.; Park, J.; Baik, J.; Choi, M. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3b42 over far-east Asia. Atmos. Res. 2016, 187, 95–105. [Google Scholar] [CrossRef]
- Kachi, M.; Kubota, T.; Aonashi, K.; Ushio, T.; Oki, R. Recent improvements in the global satellite mapping of precipitation (GSMAP). In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3762–3765. [Google Scholar]
- Mega, T.; Ushio, T.; Matsuda, T.; Kubota, T.; Kachi, M.; Oki, R. Gauge-adjusted global satellite mapping of precipitation. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1928–1935. [Google Scholar] [CrossRef]
- Kentaro, T.; Saavedra, V.; Masahiro, R.; Kazuki, T.; Tomoo, U.; Takuji, K. Spatiotemporal evaluation of the gauge-adjusted global satellite mapping of precipitation at the basin scale. J. Meteorol. Soc. JPN 2016, 94, 185–195. [Google Scholar]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP v2 global 3-hourly 0.1 degrees precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–502. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; van Dijk, A.I.J.M.; Levizzani, V.; Schellekens, J.; Miralles, D.G.; Martens, B.; de Roo, A. MSWEP: 3-hourly 0.25 degrees global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 2017, 21, 589–615. [Google Scholar] [CrossRef] [Green Version]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.K.; Dehghani, M. Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM, MSWEP over Iran. Int. J. Climatol. A J. R. Meteorol. Soc. 2017, 37, 4896–4914. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using stage-iv gauge-radar data for the conus. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef] [Green Version]
- Darand, M.; Siavashi, Z. An evaluation of global satellite mapping of precipitation (GSMAP) datasets over Iran. Meteorol. Atmos. Phys. 2021, 133, 911–923. [Google Scholar] [CrossRef]
- Guo, H.; Chen, S.; Bao, A.; Hu, J.; Gebregiorgis, A.S.; Xue, X.; Zhang, X. Inter-comparison of high-resolution satellite precipitation products over central Asia. Remote Sens. 2015, 7, 7181–7211. [Google Scholar] [CrossRef] [Green Version]
- Conti, F.L.; Hsu, K.-L.; Noto, L.V.; Sorooshian, S. Evaluation and comparison of satellite precipitation estimates with reference to a local area in the Mediterranean Sea. Atmos Res. 2014, 138, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Li, X. Evaluation of IMERG and TRMM 3b43 monthly precipitation products over mainland China. Remote Sens. 2016, 8, 472. [Google Scholar] [CrossRef] [Green Version]
- Fengjiao, C.; Yingxin, L.; Jinlan, G.; Yun, W.; Hualiang, Z. Evaluation of IMERG and TMPA precipitation datasets over summer mid-Castern China. Meteorol. Mon. 2019, 45, 1680–1690. [Google Scholar]
- Yu, L.; Yang, Y.; Zhou, X.; Ma, L.; Li, H.; Kong, F. Quality assessment of Chinese merged precipitation product over Taihang Mountains. J. Water Resour. Water Eng. 2020, 31, 33–43. [Google Scholar]
- Liu, X.; Wang, Z. Quality evaluation of precipitation products commonly used by remote sensing in the Yangtze river delta. Sci. Technol. Eng. 2021, 21, 4801–4810. [Google Scholar]
- Prakash, S.; Mitra, A.K.; Pai, D.S.; Aghakouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Huffman, G.J. Algorithm Theoretical Basis Document (ATBD) Version 4.4 for the NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (I-MERG). Available online: https://gpm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V4.6.pdf (accessed on 28 March 2022).
Name | Data Source | Spatial Resolution | Temporal Resolution | Period | Domain | Reference |
---|---|---|---|---|---|---|
PERSIANN-CDR | G, S | 0.25° × 0.25° | 1 day | 1983–NRT | 60° N–60° S | [6,32,33,34] |
GPM-IMERG | G, S, Ra, Re | 0.1° × 0.1° | 0.5 h | 2014–NRT | 60° N–60° S | [35,36,37] |
GSMAP-gauge | S | 0.1° × 0.1° | 1 h | 2000–NRT | 60° N–60° S | [38,39,40] |
MSWEP | G, S, Re | 0.1° × 0.1° | 3 h | 1979–NRT | 90° N–90° S | [41,42,43,44,45] |
Index | Equation | Optimal Value |
---|---|---|
Correlation Coefficient | 1 | |
Relative Bias | 0 | |
Mean Absolute Error | 0 | |
Root Mean Square Error | 0 | |
Nash–Sutcliffe Efficiency | 1 |
Index | Equation | Optimal Value |
---|---|---|
POD | 1 | |
POTD | 1 | |
FAR | 0 | |
CSI | 1 |
Precipitation Events Detected by Satellite-Based Precipitation Products | ||||
---|---|---|---|---|
Yes | No | |||
Precipitation Events Detected by Stations | Yes | Hit (H) | Over-Hit (OH) | False (F) |
Under-Hit (UH) | ||||
True-Hit (TH) | ||||
No | Miss (M) | Null Event (N) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, H.; Zhu, L.; Nzabarinda, V.; Lv, X.; Guo, H. Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China. Atmosphere 2022, 13, 1211. https://doi.org/10.3390/atmos13081211
Fu H, Zhu L, Nzabarinda V, Lv X, Guo H. Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China. Atmosphere. 2022; 13(8):1211. https://doi.org/10.3390/atmos13081211
Chicago/Turabian StyleFu, Hanjia, Li Zhu, Vincent Nzabarinda, Xiaoyu Lv, and Hao Guo. 2022. "Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China" Atmosphere 13, no. 8: 1211. https://doi.org/10.3390/atmos13081211
APA StyleFu, H., Zhu, L., Nzabarinda, V., Lv, X., & Guo, H. (2022). Error Characteristic Analysis of Satellite-Based Precipitation Products over Mainland China. Atmosphere, 13(8), 1211. https://doi.org/10.3390/atmos13081211