Stratospheric Chemical Lifetime of Aviation Fuel Incomplete Combustion Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concentration of Sulfuric Acid in Stratospheric Droplets
2.2. Chemical Data Sources
2.3. Calculating Reaction Rates in Sulfuric Acid
2.4. Chemical Space of Carbon and Oxygen Compounds
3. Results
3.1. Reaction Conditions
3.2. Relevance of Sulfuric Acid Chemistry
3.3. Jet Fuel Combustion Product Stability in Stratospheric Droplets
4. Discussion
4.1. Survival of Compounds in the Stratosphere
4.2. Effect of Impure Sulfuric Acid Droplets
4.3. Testing the Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculation of Concentration of Sulfuric Acid in Lower Stratospheric Aerosols
Appendix A.1. Background
Appendix A.2. Concentration Derived from Vapour Pressure of Sulfuric Acid
Antoine Coefficient | Value for Water | Value for H2SO4 |
---|---|---|
A | 29.8605 | 2.0582 |
B | 3152.2 | −4192.4 |
C | 7.3037 | 3.2578 |
D | 2.4247 × 10−9 | −1.12 × 10−3 |
E | 1.809 × 10−6 | 5.54 × 10−7 |
Appendix A.3. Concentration Derived from Wapour Pressure of Water
References
- Martinsson, B.G.; Friberg, J.; Sandvik, O.S.; Hermann, M.; van Velthoven, P.F.J.; Zahn, A. Formation and composition of the UTLS aerosol. NPJ Clim. Atmos. Sci. 2019, 2, 40. [Google Scholar] [CrossRef]
- Junge, C.E.; Chagnon, C.W.; Manson, J.E. Stratospheric aerosols. J. Atmos. Sci. 1961, 18, 81–108. [Google Scholar] [CrossRef]
- Murphy, D.M.; Cziczo, D.J.; Hudson, P.K.; Thomson, D.S. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region. J. Geophys. Res. Atmos. 2007, 112, D04203. [Google Scholar] [CrossRef]
- Brühl, C.; Lelieveld, J.; Crutzen, P.; Tost, H. The role of carbonyl sulphide as a source of stratospheric sulphate aerosol and its impact on climate. Atmos. Chem. Phys. 2012, 12, 1239–1253. [Google Scholar] [CrossRef] [Green Version]
- Neely, R.R., III; Toon, O.; Solomon, S.; Vernier, J.P.; Alvarez, C.; English, J.; Rosenlof, K.; Mills, M.; Bardeen, C.; Daniel, J. Recent anthropogenic increases in SO2 from Asia have minimal impact on stratospheric aerosol. Geophys. Res. Lett. 2013, 40, 999–1004. [Google Scholar] [CrossRef]
- Toon, O.B.; Browell, E.; Kinne, S.; Jordan, J. An analysis of lidar observations of polar stratospheric clouds. Geophys. Res. Lett. 1990, 17, 393–396. [Google Scholar] [CrossRef]
- Beyerle, G.; Neuber, R.; Schrems, O.; Wittrock, F.; Knudsen, B. Multiwavelength lidar measurements of stratospheric aerosols above Spitsbergen during winter 1992/93. Geophys. Res. Lett. 1994, 21, 57–60. [Google Scholar] [CrossRef]
- Tabazadeh, A.; Toon, O.B.; Clegg, S.L.; Hamill, P. A new parameterization of H2SO4/H2O aerosol composition: Atmospheric implications. Geophys. Res. Lett. 1997, 24, 1931–1934. [Google Scholar] [CrossRef]
- Steele, H.M.; Hamill, P. Effects of temperature and humidity on the growth and optical properties of sulphuric acid—Water droplets in the stratosphere. J. Aerosol Sci. 1981, 12, 517–528. [Google Scholar] [CrossRef]
- Carslaw, K.S.; Peter, T.; Clegg, S.L. Modeling the composition of liquid stratospheric aerosols. Rev. Geophys. 1997, 35, 125–154. [Google Scholar] [CrossRef]
- Solomon, S. The mystery of the Antarctic ozone “hole”. Rev. Geophys. 1988, 26, 131–148. [Google Scholar] [CrossRef]
- Iraci, L.T.; Tolbert, M.A. Heterogeneous interaction of formaldehyde with cold sulfuric acid: Implications for the upper troposphere and lower stratosphere. J. Geophys. Res. Atmos. 1997, 102, 16099–16107. [Google Scholar] [CrossRef]
- Singh, H.; Chen, Y.; Tabazadeh, A.; Fukui, Y.; Bey, I.; Yantosca, R.; Jacob, D.; Arnold, F.; Wohlfrom, K.; Atlas, E. Distribution and fate of selected oxygenated organic species in the troposphere and lower stratosphere over the Atlantic. J. Geophys. Res. Atmos. 2000, 105, 3795–3805. [Google Scholar] [CrossRef]
- Schlager, H.; Arnold, F. Balloon-borne composition measurements of stratospheric negative ions and inferred sulfuric acid vapor abundances during the MAP/GLOBUS 1983 campaign. Planet. Space Sci. 1987, 35, 693–701. [Google Scholar] [CrossRef]
- Jurkat, T.; Voigt, C.; Arnold, F.; Schlager, H.; Kleffmann, J.; Aufmhoff, H.; Schäuble, D.; Schaefer, M.; Schumann, U. Measurements of HONO, NO, NOy and SO2 in aircraft exhaust plumes at cruise. Geophys. Res. Lett. 2011, 38, L10807. [Google Scholar] [CrossRef] [Green Version]
- Fahey, D.W.; Keim, E.R.; Woodbridge, E.L.; Gao, R.S.; Boering, K.A.; Daube, B.C.; Wofsy, S.C.; Lohmann, R.P.; Hintsa, E.J.; Dessler, A.E.; et al. In situ observations in aircraft exhaust plumes in the lower stratosphere at midlatitudes. J. Geophys. Res. Atmos. 1995, 100, 3065–3074. [Google Scholar] [CrossRef]
- Schumann, U.; Arnold, F.; Busen, R.; Curtius, J.; Kärcher, B.; Kiendler, A.; Petzold, A.; Schlager, H.; Schröder, F.; Wohlfrom, K.H. Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7. J. Geophys. Res. Atmos. 2002, 107, AAC 2-1–AAC 2-27. [Google Scholar] [CrossRef] [Green Version]
- Brasseur, G.; Cox, R.; Hauglustaine, D.; Isaksen, I.; Lelieveld, J.; Lister, D.; Sausen, R.; Schumann, U.; Wahner, A.; Wiesen, P. European scientific assessment of the atmospheric effects of aircraft emissions. Atmos. Environ. 1998, 32, 2329–2418. [Google Scholar] [CrossRef] [Green Version]
- Arnold, F.; Hauck, G. Lower stratosphere trace gas detection using aircraft-borne active chemical ionization mass spectrometry. Nature 1985, 315, 307–309. [Google Scholar] [CrossRef]
- Hagen, D.E.; Whitefield, P.D.; Schlager, H. Particulate emissions in the exhaust plume from commercial jet aircraft under cruise conditions. J. Geophys. Res. Atmos. 1996, 101, 19551–19557. [Google Scholar] [CrossRef]
- Schröder, F.; Brock, C.A.; Baumann, R.; Petzold, A.; Busen, R.; Schulte, P.; Fiebig, M. In situ studies on volatile jet exhaust particle emissions: Impact of fuel sulfur content and environmental conditions on nuclei mode aerosols. J. Geophys. Res. Atmos. 2000, 105, 19941–19954. [Google Scholar] [CrossRef]
- Tran, S.; Brown, A.; Olfert, J.S. Comparison of particle number emissions from in-flight aircraft fueled with jet A1, JP-5 and an alcohol-to-jet fuel blend. Energy Fuels 2020, 34, 7218–7222. [Google Scholar] [CrossRef]
- Flynn, G.J.; Wirick, S.; Keller, L.P. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula. Earth Planets Space 2013, 65, 13. [Google Scholar] [CrossRef] [Green Version]
- Chauvigné, A.; Jourdan, O.; Schwarzenboeck, A.; Gourbeyre, C.; Gayet, J.F.; Voigt, C.; Schlager, H.; Kaufmann, S.; Borrmann, S.; Molleker, S. Statistical analysis of contrail to cirrus evolution during the Contrail and Cirrus Experiment (CONCERT). Atmos. Chem. Phys. 2018, 18, 9803–9822. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.-B.; Berthet, G.; Levasseur-Regourd, A.-C.; Beresnev, S.; Miffre, A.; Rairoux, P.; Vignelles, D.; Jégou, F. Origins and Spatial Distribution of Non-Pure Sulfate Particles (NSPs) in the Stratosphere Detected by the Balloon-Borne Light Optical Aerosols Counter (LOAC). Atmosphere 2020, 11, 1031. [Google Scholar] [CrossRef]
- Timko, M.T.; Herndon, S.C.; De La Rosa Blanco, E.; Wood, E.C.; Yu, Z.; Miake-Lye, R.C.; Knighton, W.B.; Shafer, L.; DeWitt, M.J.; Corporan, E. Combustion products of petroleum jet fuel, a Fischer–Tropsch synthetic fuel, and a biomass fatty acid methyl ester fuel for a gas turbine engine. Combust. Sci. Technol. 2011, 183, 1039–1068. [Google Scholar] [CrossRef]
- Tesseraux, I. Risk factors of jet fuel combustion products. Toxicol. Lett. 2004, 149, 295–300. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Seager, S. A Data Resource for Sulfuric Acid Reactivity of Organic Chemicals. Data 2021, 6, 24. [Google Scholar] [CrossRef]
- Durre, I.; Vose, R.S.; Wuertz, D.B. Overview of the integrated global radiosonde archive. J. Clim. 2006, 19, 53–68. [Google Scholar] [CrossRef] [Green Version]
- Solutions, A. Map of Scheduled Airline Traffic Around the World. Available online: https://www.aqtsolutions.com/map-of-scheduled-airline-traffic-around-the-world/ (accessed on 12 May 2022).
- Möhler, O.; Arnold, F. Gaseous Sulfuric Acid and Sulfur Dioxide Measurements in the Arctic Troposphere and Lower Stratosphere: Implications for Hydroxyl Radical Abundances. Ber. Der Bunsenges. Für Phys. Chem. 1992, 96, 280–283. [Google Scholar] [CrossRef]
- Viggiano, A.; Arnold, F. Extended sulfuric acid vapor concentration measurements in the stratosphere. Geophys. Res. Lett. 1981, 8, 583–586. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Fushimi, A.; Saitoh, K.; Fujitani, Y.; Takegawa, N. Identification of jet lubrication oil as a major component of aircraft exhaust nanoparticles. Atmos. Chem. Phys. 2019, 19, 6389–6399. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Herndon, S.C.; Ziemba, L.D.; Timko, M.T.; Liscinsky, D.S.; Anderson, B.E.; Miake-Lye, R.C. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft. Environ. Sci. Technol. 2012, 46, 9630–9637. [Google Scholar] [CrossRef]
- Bains, W.; Petkowski, J.J.; Zhan, Z.; Seager, S. Evaluating Alternatives to Water as Solvents for Life: The Example of Sulfuric Acid. Life 2021, 11, 400. [Google Scholar] [CrossRef]
- Bains, W.; Seager, S. A combinatorial approach to biochemical space: Description and application to the redox distribution of metabolism. Astrobiology 2012, 12, 271–281. [Google Scholar] [CrossRef]
- Petkowski, J.J.; Bains, W.; Seager, S. On the Potential of Silicon as a Building Block for Life. Life 2020, 10, 84. [Google Scholar] [CrossRef]
- Heller, S.R.; McNaught, A.; Pletnev, I.; Stein, S.; Tchekhovskoi, D. InChI, the IUPAC International Chemical Identifier. J. Cheminf. 2015, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Yue, G.K.; Poole, L.R.; Wang, P.-H.; Chiou, E.W. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data. J. Geophys. Res. Atmos. 1994, 99, 3727–3738. [Google Scholar] [CrossRef]
- Murphy, D.M.; Thomson, D.S.; Mahoney, M.J. In Situ Measurements of Organics, Meteoritic Material, Mercury, and Other Elements in Aerosols at 5 to 19 Kilometers. Science 1998, 282, 1664–1669. [Google Scholar] [CrossRef]
- Lambe, A.T.; Ahern, A.T.; Williams, L.R.; Slowik, J.G.; Wong, J.P.S.; Abbatt, J.P.D.; Brune, W.H.; Ng, N.L.; Wright, J.P.; Croasdale, D.R.; et al. Characterization of aerosol photooxidation flow reactors: Heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements. Atmos. Meas. Tech. 2011, 4, 445–461. [Google Scholar] [CrossRef] [Green Version]
- Pourkhesalian, A.M.; Stevanovic, S.; Rahman, M.M.; Faghihi, E.M.; Bottle, S.E.; Masri, A.R.; Brown, R.J.; Ristovski, Z.D. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles. Atmos. Chem. Phys. 2015, 15, 9099–9108. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, Y.; Zuo, J.; Wu, H. Compositions and pollutant sources of haze in Beijing urban sites. Environ. Sci. Pollut. Res. 2016, 23, 8827–8836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lambe, A.T.; Upshur, M.A.; Brooks, W.A.; Gray Bé, A.; Thomson, R.J.; Geiger, F.M.; Surratt, J.D.; Zhang, Z.; Gold, A.; et al. Highly Oxygenated Multifunctional Compounds in α-Pinene Secondary Organic Aerosol. Environ. Sci. Technol. 2017, 51, 5932–5940. [Google Scholar] [CrossRef]
- Mohr, C.; Thornton, J.A.; Heitto, A.; Lopez-Hilfiker, F.D.; Lutz, A.; Riipinen, I.; Hong, J.; Donahue, N.M.; Hallquist, M.; Petäjä, T.; et al. Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nat. Commun. 2019, 10, 4442. [Google Scholar] [CrossRef] [Green Version]
- Ylisirniö, A.; Buchholz, A.; Mohr, C.; Li, Z.; Barreira, L.; Lambe, A.; Faiola, C.; Kari, E.; Yli-Juuti, T.; Nizkorodov, S.A.; et al. Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems. Atmos. Chem. Phys. 2020, 20, 5629–5644. [Google Scholar] [CrossRef]
- Fang, Z.; Deng, W.; Zhang, Y.; Ding, X.; Tang, M.; Liu, T.; Hu, Q.; Zhu, M.; Wang, Z.; Yang, W.; et al. Open burning of rice, corn and wheat straws: Primary emissions, photochemical aging, and secondary organic aerosol formation. Atmos. Chem. Phys. 2017, 17, 14821–14839. [Google Scholar] [CrossRef] [Green Version]
- Hodshire, A.L.; Akherati, A.; Alvarado, M.J.; Brown-Steiner, B.; Jathar, S.H.; Jimenez, J.L.; Kreidenweis, S.M.; Lonsdale, C.R.; Onasch, T.B.; Ortega, A.M.; et al. Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. Environ. Sci. Technol. 2019, 53, 10007–10022. [Google Scholar] [CrossRef]
- Hartikainen, A. Transformation of Organic Aerosol from Residential Wood Combustion during Atmospheric Aging Processes. Doctoral Dissertation, University of Eastern Finland, Kuopio, Finland, 2020. [Google Scholar]
- Torres, O.; Bhartia, P.K.; Taha, G.; Jethva, H.; Das, S.; Colarco, P.; Krotkov, N.; Omar, A.; Ahn, C. Stratospheric injection of massive smoke plume from Canadian boreal fires in 2017 as seen by DSCOVR-EPIC, CALIOP, and OMPS-LP observations. J. Geophys. Res. Atmos. 2020, 125, e2020JD032579. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Z.; Seager, S.; Petkowski, J.J.; Sousa-Silva, C.; Ranjan, S.; Huang, J.; Bains, W. Assessment of isoprene as a possible biosignature gas in exoplanets with anoxic atmospheres. Astrobiology 2021, 21, 765–792. [Google Scholar] [CrossRef]
- Kon, H.; Blois, M., Jr. Paramagnetism of Hydrocarbon-Conc. H2SO4 Systems. J. Chem. Phys. 1958, 28, 743–744. [Google Scholar] [CrossRef]
- Höpfner, M.; Ungermann, J.; Borrmann, S.; Wagner, R.; Spang, R.; Riese, M.; Stiller, G.; Appel, O.; Batenburg, A.M.; Bucci, S.; et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 2019, 12, 608–612. [Google Scholar] [CrossRef]
- Wang, M.; Xiao, M.; Bertozzi, B.; Marie, G.; Rörup, B.; Schulze, B.; Bardakov, R.; He, X.-C.; Shen, J.; Scholz, W.; et al. Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation. Nature 2022, 605, 483–489. [Google Scholar] [CrossRef]
- Liler, M. Reaction Mechanisms in Sulphuric Acid and Other Strong Acid Solutions; Academic Press: London, UK, 1971. [Google Scholar]
- Johnston, M.V. Sampling and analysis of individual particles by aerosol mass spectrometry. J. Mass Spectrom. 2000, 35, 585–595. [Google Scholar] [CrossRef]
- Murphy, D.M.; Froyd, K.D.; Schwarz, J.P.; Wilson, J.C. Observations of the chemical composition of stratospheric aerosol particles. Q. J. R. Meteorol. Soc. 2014, 140, 1269–1278. [Google Scholar] [CrossRef]
- Thomson, D.S.; Schein, M.E.; Murphy, D.M. Particle Analysis by Laser Mass Spectrometry WB-57F Instrument Overview. Aerosol Sci. Technol. 2000, 33, 153–169. [Google Scholar] [CrossRef] [Green Version]
- Mauersberger, K. Mass spectrometry in the stratosphere. Adv. Space Res. 1982, 2, 287–290. [Google Scholar] [CrossRef]
- Arnold, F.; Heitmann, H.; Oberfrank, K. First composition measurements of positive ions in the upper troposphere. Planet. Space Sci. 1984, 32, 1567–1576. [Google Scholar] [CrossRef]
- Middlebrook, A.; Murphy, D.; Lee, S.; Lee, S.; Lee, S.; Thomson, D.; Thomson, D. Classification of the PALMS single particle mass spectral data from Atlanta by regression tree analysis. In Proceedings of the AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2001; p. A11B-07. [Google Scholar]
- Chemical Sciences Laboratory. PALMS Spectra Categories. Available online: https://csl.noaa.gov/groups/csl2/instruments/palms/cat.html#wam (accessed on 17 July 2022).
- Pollack, J.B.; Toon, O.B.; Summers, A.; Van Camp, W.; Baldwin, B. Estimates of the climatic impact of aerosols produced by space shuttles, SST’s, and other high flying aircraft. J. Appl. Meteorol. Climatol. 1976, 15, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Schumann, U. On the Effect of Emissions from Aircraft Engines on the State of the Atmosphere; Institut für Physik der Atmosphäre: Oberpfaffenhofen, Germany, 1993. [Google Scholar]
- Tie, X.X.; Brasseur, G.; Lin, X.; Friedlingstein, P.; Granier, C.; Rasch, P. The impact of high altitude aircraft on the ozone layer in the stratosphere. J. Atmos. Chem. 1994, 18, 103–128. [Google Scholar] [CrossRef]
- Grobman, J. Review of Jet Engine Emissions. NASA TM X-68064. In Proceedings of the Department of Transportatiion Survey Conference: Climatic Impact Assessment Program, Cambridge, MA, USA, 15–16 February 1972. [Google Scholar]
- Graver, B.; Zhang, K.; Ructherford, D. CO2 Emissions from Commercial Aviation, 2018; ICCT Working Paper 2019-16; International Council on Clean Transportation: Washington, DC, USA, 2019. [Google Scholar]
- Yu, P.; Rosenlof, K.H.; Liu, S.; Telg, H.; Thornberry, T.D.; Rollins, A.W.; Portmann, R.W.; Bai, Z.; Ray, E.A.; Duan, Y.; et al. Efficient transport of tropospheric aerosol into the stratosphere via the Asian summer monsoon anticyclone. Proc. Natl. Acad. Sci. USA 2017, 114, 6972–6977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tait, K.N.; Khan, M.A.H.; Bullock, S.; Lowenberg, M.H.; Shallcross, D.E. Aircraft Emissions, Their Plume-Scale Effects, and the Spatio-Temporal Sensitivity of the Atmospheric Response: A Review. Aerospace 2022, 9, 355. [Google Scholar] [CrossRef]
- Bossolasco, A.; Jegou, F.; Sellitto, P.; Berthet, G.; Kloss, C.; Legras, B. Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer. Atmos. Chem. Phys. 2021, 21, 2745–2764. [Google Scholar] [CrossRef]
- Ayers, G.P.; Gillett, R.W.; Gras, J.L. On the vapor pressure of sulfuric acid. Geophys. Res. Lett. 1980, 7, 433–436. [Google Scholar] [CrossRef]
- Luo, B.P.; Peter, T.; Crutzen, P.J. Maximum Supercooling of H2SO4 Acid Aerosol Droplets. Ber. Der Bunsenges. Für Phys. Chem. 1992, 96, 334–338. [Google Scholar] [CrossRef]
- McGraw, R.; Weber, R.J. Hydrates in binary sulfuric acid-water vapor: Comparison of CIMS measurements with the Liquid-Drop Model. Geophys. Res. Lett. 1998, 25, 3143–3146. [Google Scholar] [CrossRef]
- Marti, J.J.; Jefferson, A.; Cai, X.P.; Richert, C.; McMurry, P.H.; Eisele, F. H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions. J. Geophys. Res. Atmos. 1997, 102, 3725–3735. [Google Scholar] [CrossRef]
- Yaws, C.L. Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety and Health Related Properties for Organic and Inorganic Chemicals. J. Chem. Eng. Jpn. 1999, 39, 1057–1064. [Google Scholar]
- Arnold, F.; Fabian, R.; Joos, W. Measurements of the height variation of sulfuric acid vapor concentrations in the stratosphere. Geophys. Res. Lett. 1981, 8, 293–296. [Google Scholar] [CrossRef]
- Turco, R.; Hamill, P.; Toon, O.; Whitten, R.; Kiang, C. A one-dimensional model describing aerosol formation and evolution in the stratosphere: I. Physical processes and mathematical analogs. J. Atmos. Sci. 1979, 36, 699–717. [Google Scholar] [CrossRef] [Green Version]
- Arnold, F.; Curtius, J.; Spreng, S.; Deshler, T. Stratospheric aerosol sulfuric acid: First direct in situ measurements using a novel balloon-based mass spectrometer apparatus. J. Atmos. Chem. 1998, 30, 3–10. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Punch, W.F.; Zongker, D.; Goodman, E.D. The Royal Tree Problem, a Benchmark for Single and Multiple Population Genetic Programming. In Advances in Genetic Programming; MIT Press: Cambridge, MA, USA, 1996; Volume 2. [Google Scholar] [CrossRef]
- Bains, W.; Gilbert, R.; Sviridenko, L.; Gascon, J.-M.; Scoffin, R.; Birchall, K.; Harvey, I.; Caldwell, J. Evolutionary computational methods to predict oral bioavailability QSPRs. Curr. Opin. Drug Discov. Dev. 2002, 5, 44–51. [Google Scholar]
- Zhang, R.; Wooldridge, P.J.; Abbatt, J.P.D.; Molina, M.J. Physical chemistry of the sulfuric acid/water binary system at low temperatures: Stratospheric implications. J. Phys. Chem. 1993, 97, 7351–7358. [Google Scholar] [CrossRef]
- Mund, C.; Zellner, R. Raman- and Mie-Spectroscopic Studies of the Cooling Behaviour of Levitated, Single Sulfuric Acid/H2O Microdroplets. ChemPhysChem 2003, 4, 638–645. [Google Scholar] [CrossRef]
- Gmitro, J.I.; Vermeulen, T. Vapor-liquid equilibria for aqueous sulfuric acid. AIChE J. 1964, 10, 740–746. [Google Scholar] [CrossRef] [Green Version]
Number | SMILES 1 | Name | BP (°C) | Ref. |
---|---|---|---|---|
1 | C=CC1=CC=CC=C1 | Styrene | 145 | 2 |
2 | O=CC(C)=C | Methylacrolein | 69 | 1 |
3 | CC(=O)C | Acetone | 56 | 1 |
4 | O=CC=C | Acrolein | 53 | 1,2 |
5 | CC=O | Acetaldehyde | 20.2 | 1,2 |
6 | C=O | formaldehyde | −19 | 2 |
7 | C=CCCCCC | 1-heptene | 94 | 2 |
8 | C=CCCCCCCC | 1-nonene | 147 | 2 |
9 | C=CCCCCCC | 1-octene | 121 | 2 |
10 | C=CCC | Butene | −6.47 | 1 |
11 | C=C | Ethylene | −103.7 | 1 |
12 | C=CCCC | Pentene | 123 | 1 |
13 | C=CC | Propene | −47.6 | 1 |
14 | CO | Methanol | 64.7 | 1 |
15 | CCCCCCCCCCCCCCCC | n-hexadecane | 286.9 | 2 |
16 | CCCCCCCCCCCCCCC | n-pentadecane | 270 | 2 |
17 | CCCCCCCCCCCCC | n-tridecane | 234 | 2 |
18 | CCCCCCCCCCCC | n-dodecane | 216 | 2 |
19 | CCCCCCCCCCC | n-undecane | 195 | 2 |
20 | CCCCCCCCCC | n-decane | 173.8 | 2 |
21 | CCCCCCC | n-heptane | 98.4 | 2 |
22 | CCCCCCCCC | n-nonane | 150.4 | 2 |
23 | CCCCCCCC | n-octane | 125.1 | 2 |
24 | CCCCC1=CC=CC=C1 | 1-phenylbutane | 183.3 | 2 |
25 | CC1=C2C=CC=CC2=CC=C1 | 1-methylnaphthalene | 241.5 | 2 |
26 | CC1=CC=C2C=CC=CC2=C1 | 2-methylnaphthalene | 241 | 2 |
27 | C12=CC=CC=C1C=C3C=CC4=CC=CC5=CC=C2C3=C45 | Benzo(a)pyrene | 495 | 2 |
28 | C12=CC=CC=C1C=CC=C2 | Naphthalene | 218 | 2 |
29 | OC1=CC=CC=C1 | Phenol | 181.7 | 2 |
30 | C12=CC=CC=C1C=C3C=CC=CC3=C2 | Anthracene | 341.3 | 2 |
31 | C12=CC=CC=C1C=CC3=CC4=CC=CC=C4C=C32 | Benzo(a)anthracene | 438 | 2 |
32 | C12=CC=CC=C1C=CC3=C4C=CC=CC4=CC=C23 | Chrysene | 448 | 2 |
33 | CCC1=CC=CC=C1 | ethylbenzene | 136 | 2 |
34 | C12=CC=CC(C3=C4C=CC=C3)=C1C4=CC=C2 | Fluoranthene | 375 | 2 |
35 | CC1=CC=CC=C1C | O-xylene | 144 | 2 |
36 | C12=CC=CC=C1C=CC3=CC=CC=C23 | Phenanthrene | 332 | 2 |
37 | C12=CC=C3C=CC=C4C=CC(C2=C34)=CC=C1 | Pyrene | 404 | 2 |
38 | CC1=CC=CC=C1 | Toluene | 111 | 1,2 |
39 | CC1=CC=C(C)C=C1 | P-xylene | 138 | 2 |
40 | C1=CC=CC=C1 | Benzene | 80.1 | 1,2 |
Pressure Bin (hPa) | Altitude Range (km) | Temperature Range (K) | Sulfuric Acid Concentration Range (%) |
---|---|---|---|
150 | 13.53–14.04 | 204.6–225.7 | 48.8–73.3 |
200 | 11.10–12.20 | 210.9–226.3 | 42.8–72.0 |
250 | 10.29–10.74 | 212.2–235.8 | 35.9–71.5 |
300 | 9.08–9.49 | 215.8–245.5 | 32.9–69.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bains, W.; Viita, E.; Petkowski, J.J.; Seager, S. Stratospheric Chemical Lifetime of Aviation Fuel Incomplete Combustion Products. Atmosphere 2022, 13, 1209. https://doi.org/10.3390/atmos13081209
Bains W, Viita E, Petkowski JJ, Seager S. Stratospheric Chemical Lifetime of Aviation Fuel Incomplete Combustion Products. Atmosphere. 2022; 13(8):1209. https://doi.org/10.3390/atmos13081209
Chicago/Turabian StyleBains, William, Eleanor Viita, Janusz J. Petkowski, and Sara Seager. 2022. "Stratospheric Chemical Lifetime of Aviation Fuel Incomplete Combustion Products" Atmosphere 13, no. 8: 1209. https://doi.org/10.3390/atmos13081209
APA StyleBains, W., Viita, E., Petkowski, J. J., & Seager, S. (2022). Stratospheric Chemical Lifetime of Aviation Fuel Incomplete Combustion Products. Atmosphere, 13(8), 1209. https://doi.org/10.3390/atmos13081209