Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part I: Description and Verification against Rain-Gauge Observations
Abstract
:1. Introduction
2. The CReSS Model, Experiments, and Verification of QPFs
2.1. The CReSS Model and Experiments
2.2. Observational Data and Verification of Model QPFs
3. Time-Lagged Ensemble for Typhoon Mangkhut (2018)
3.1. Track Forecast and Examples of Rainfall Structure
3.2. Model QPFs for Typhoon Mangkhut (2018)
3.3. Categorical Skill Scores and Rainfall Similarity
4. Time-Lagged Ensemble for Typhoon Koppu (2015)
4.1. Track Forecast and Examples of Rainfall Structure
4.2. Model QPFs for Typhoon Koppu (2015)
4.3. Categorical Skill Scores and Rainfall Similarity
5. Time-Lagged Ensemble for Typhoon Melor (2015)
5.1. Track Forecast and Examples of Rainfall Structure
5.2. Model QPFs for Typhoon Melor (2015)
5.3. Categorical Skill Scores and Rainfall Similarity
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNU-EHS. World Risk Report 2016; United Nations University-Institute for Environment and Human Security, Bündnis Entwicklung Hilft: Berlin, Germany; United Nations University-EHS: Bonn, Germany, 2016; 69p, ISBN 978-3-946785-02-6. Available online: https://weltrisikobericht.de/wp-content/uploads/2016/08/WorldRiskReport2016.pdf (accessed on 20 June 2022).
- Guha-Sapir, D.; Hoyois, P.; Wallemacq, P.; Below, P. Annual Disaster Statistical Review 2016; The Numbers and Trends; Centre for Research on the Epidemiology of Disasters (CRED), Institute of Health and Society (IRSS), and Université catholique de Louvain: Brussels, Belgium, 2017; 80p, Available online: https://www.emdat.be/sites/default/files/adsr_2016.pdf (accessed on 20 June 2022).
- Jaganmohan, M. Countries with the Highest Disaster Risk Worldwide in 2021; Statista: Hamburg, Germany, 2022; Available online: https://www.statista.com/statistics/1270469/disaster-risk-index-most-affected-countries/ (accessed on 20 June 2022).
- Wannewitz, S.; Hagenlocher, M.; Garschagen, M. Development and validation of a sub-national multi-hazard risk index for the Philippines. GI_Forum 2016, 1, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Brown, S. The Philippines is the most storm-exposed country on Earth. Time, 11 November 2013. [Google Scholar]
- Czajkowski, J.; Villarini, G.; Michel-Kerjan, E.; Smith, J.A. Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett. 2013, 8, 044056. [Google Scholar] [CrossRef]
- Opiso, E.M.; Puno, G.R.; Alburo, J.L.P.; Detalla, A.L. Landslide susceptibility mapping using GIS and FR method along the Cagayan de Oro-Bukidnon-Davao City route corridor, Philippines. KSCE J. Civ. Eng. 2016, 20, 2506–2512. [Google Scholar] [CrossRef]
- Cabrera, J.S.; Lee, H.S. Flood risk assessment for Davao Oriental in the Philippines using geographic information system-based multi-criteria analysis and the maximum entropy model. J. Flood Risk Manag. 2020, 13, e12607. [Google Scholar] [CrossRef] [Green Version]
- NDRRMC (National Disaster Risk Reduction and Management Council). Effects of Typhoon “Yolanda” (Haiyan). SitRep. 108. 2014 NDRRMC, Quezon City, Philippines; 67p. Available online: https://www.ndrrmc.gov.ph/attachments/article/1329/Effects_of_Typhoon_YOLANDA_(HAIYAN)_SitRep_No_108_03APR2014.pdf (accessed on 7 April 2020).
- Soria, J.L.A.; Switzer, A.D.; Villanoy, C.L.; Fritz, H.M.; Bilgera, P.H.T.; Cabrera, O.C.; Siringan, F.P.; Maria, Y.Y.S.; Ramos, R.D.; Fernandez, I.Q. Repeat storm surge disasters of Typhoon Haiyan and its 1897 predecessor in the Philippines. Bull. Am. Meteorol. Soc. 2016, 97, 31–48. [Google Scholar] [CrossRef]
- Mori, N.; Kato, M.; Kim, S.; Mase, H.; Shibutani, Y.; Takemi, T.; Tsuboki, K.; Yasuda, T. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett. 2014, 41, 5106–5113. [Google Scholar] [CrossRef] [Green Version]
- Ren, D. Storm-Trigger Landslides in Warmer Climates; Springer: Cham, Switzerland, 2015; 365p, ISBN 978-3-319-08517-3. [Google Scholar] [CrossRef]
- Yonson, R.; Noy, I.; Gaillard, J.C. The measurement of disaster risk: An example from tropical cyclones in the Philippines. Rev. Dev. Econ. 2018, 22, 736–765. [Google Scholar] [CrossRef]
- Desquitado, A.M.S.; Perez, M.R.R.; Puchero, R.S.R.; Macalalad, E.P. A climatological study of typhoons over the Philippine Area of Responsibility from 1989–2018. E3S Web Conf. 2020, 200, 02001. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lee, C.-Y.; Jou, B.J.-D.; Celebre, C.P.; David, S.; Tsuboki, K. High-resolution time-lagged ensemble prediction for landfall intensity of Super Typhoon Haiyan (2013) using a cloud-resolving model. Weather Clim. Extrem. 2022, 37, 100473. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. [Google Scholar] [CrossRef]
- Kubota, H.; Chan, J.C.L. Interdecadal variability of tropical cyclone landfall in the Philippines. Geophys. Res. Lett. 2009, 36, L12802. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Esteban, M. Statistics of tropical cyclone landfalls in the Philippines: Unusual characteristics of 2013 Typhoon Haiyan. Nat. Hazards 2016, 80, 211–222. [Google Scholar] [CrossRef]
- Cinco, T.A.; de Guzman, R.G.; Ortiz, A.M.D.; Delfino, R.J.P.; Lasco, R.D.; Hilario, F.D.; Juanillo, E.L.; Barba, R.; Ares, E.D. Observed trends and impacts of tropical cyclones in the Philippines. Int. J. Climatol. 2016, 36, 4638–4650. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.-C.; Chen, K.-C.; Tsou, C.-H.; Hsu, H.-H.; Hong, C.-C.; Liang, H.-C.; Tu, C.-Y.; Kitoh, A. Future changes in the frequency and destructiveness of landfalling tropical cyclones over East Asia projected by high-resolution AGCMs. Earth’s Future 2021, 9, e2020EF001888. [Google Scholar] [CrossRef]
- Golding, B.W. Quantitative precipitation forecasting in the UK. J. Hydrol. 2000, 239, 286–305. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Carbone, R.E. Improving quantitative precipitation forecasts in the warm season. A USWRP research and development strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Cuo, L.; Pagano, T.C.; Wang, Q.J. A review of quantitative precipitation forecasts and their use in short- to medium-range streamflow forecasting. J. Hydormeteorol. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Kneis, D.; Abona, C.; Bronsterta, A. Heistermanna, Verification of short-term runoff forecasts for a small Philippine basin (Marikina). Hydrol. Sci. J. 2017, 62, 205–216. [Google Scholar] [CrossRef]
- MacLeod, D.; Easton-Calabria, E.; de Perez, E.C.; Jaime, C. Verification of forecasts for extreme rainfall, tropical cyclones, flood and storm surge over Myanmar and the Philippines. Weather Clim. Extrem. 2021, 33, 100325. [Google Scholar] [CrossRef]
- Wang, S.-T. Track, Intensity, Structure, Wind and Precipitation Characteristics of Typhoons Affecting Taiwan (in Chinese); Research Rep. 80-73, NSC 80-04140-P052-02B; National Science Council (NSC): Taipei, Taiwan, 1989; 285p. [Google Scholar]
- Chang, C.-P.; Yeh, T.-C.; Chen, J.-M. Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Weather Rev. 1993, 121, 734–752. [Google Scholar] [CrossRef]
- Cheung, K.K.W.; Huang, L.-R.; Lee, C.-S. Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 2008, 8, 1463–1474. [Google Scholar] [CrossRef]
- Su, S.-H.; Kuo, H.-C.; Hsu, L.-H.; Yang, Y.-T. Temporal and spatial characteristics of typhoon extreme rainfall in Taiwan. J. Meteorol. Soc. Jpn. 2012, 90, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-S.; Huang, L.-R.; Shen, H.-S.; Wang, S.-T. A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards 2006, 37, 87–105. [Google Scholar] [CrossRef]
- Lee, C.-S.; Huang, L.-R.; Chen, D.Y.-C. The modification of the typhoon rainfall climatology model in Taiwan. Nat. Hazards Earth Syst. Sci. 2013, 13, 65–74. [Google Scholar] [CrossRef]
- Hong, J.-S.; Fong, C.-T.; Hsiao, L.-F.; Yu, Y.-C.; Tzeng, C.-Y. Ensemble typhoon quantitative precipitation forecasts model in Taiwan. Weather Forecast. 2015, 30, 217–237. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E.S. Stochastic dynamic prediction. Tellus 1969, 21, 739–759. [Google Scholar] [CrossRef]
- Hsiao, L.-F.; Yang, M.-J.; Lee, C.-S.; Kuo, H.-C.; Shih, D.-S.; Tsai, C.-C.; Wang, C.-J.; Chang, L.-Y.; Chen, D.Y.-C.; Feng, L.; et al. Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol. 2013, 506, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-H.; Yang, S.-C.; Ho, J.-Y.; Lin, G.-F.; Hwang, G.-D.; Lee, C.-S. Flash flood warnings using the ensemble precipitation forecasting technique: A case study on forecasting floods in Taiwan caused by typhoons. J. Hydrol. 2015, 520, 367–378. [Google Scholar] [CrossRef]
- Teng, H.-F.; Done, J.M.; Lee, C.-S.; Kuo, Y.-H. Dependence of probabilistic quantitative precipitation forecast performance on typhoon characteristics and forecast track error in Taiwan. Weather Forecast. 2020, 35, 585–607. [Google Scholar] [CrossRef]
- Gentry, M.S.; Lackmann, G.M. Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Mon. Weather Rev. 2010, 138, 688–704. [Google Scholar] [CrossRef] [Green Version]
- Tsuboki, K.; Sakakibara, A. Large-scale parallel computing of cloud resolving storm simulator. In High Performance Computing; Zima, H.P., Joe, K., Sato, M., Seo, Y., Shimasaki, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 243–259. [Google Scholar]
- Tsuboki, K.; Sakakibara, A. Numerical Prediction of High-Impact Weather Systems. In The Textbook for the Seventeenth IHP Training Course in 2007; Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO: Nagoya, Japan, 2007; p. 273. [Google Scholar]
- Wang, C.-C. The more rain, the better the model performs—The dependency of quantitative precipitation forecast skill on rainfall amount for typhoons in Taiwan. Mon. Weather Rev. 2015, 143, 1723–1748. [Google Scholar] [CrossRef]
- Wang, C.-C. Corrigendum. Mon. Weather Rev. 2016, 144, 3031–3033. [Google Scholar] [CrossRef]
- Wang, C.-C. Paper of notes: The more rain from typhoons, the better the models perform. Bull. Am. Meteorol. Soc. 2016, 97, 16–17. [Google Scholar]
- Wang, C.-C.; Chang, C.-S.; Wang, Y.-W.; Huang, C.-C.; Wang, S.-C.; Chen, Y.-S.; Tsuboki, K.; Huang, S.-Y.; Chen, S.-H.; Chuang, P.-Y.; et al. Evaluating quantitative precipitation forecasts using the 2.5 km CReSS model for typhoons in Taiwan: An update through the 2015 season. Atmosphere 2021, 12, 1501. [Google Scholar] [CrossRef]
- Wang, C.-C.; Paul, S.; Huang, S.-Y.; Wang, Y.-W.; Tsuboki, K.; Lee, D.-I.; Lee, J.-S. Typhoon quantitative precipitation forecasts by the 2.5 km CReSS model in Taiwan: Examples and role of topography. Atmosphere 2022, 13, 623. [Google Scholar] [CrossRef]
- Fang, X.; Kuo, Y.-H. Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Weather Rev. 2013, 141, 3908–3932. [Google Scholar] [CrossRef] [Green Version]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef] [Green Version]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Roebber, P.J.; Schultz, D.M.; Colle, B.A.; Stensrud, D.J. Toward improved prediction: High-resolution and ensemble modeling systems in operations. Weather Forecast. 2004, 19, 936–949. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Kalnay, E. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A 1983, 35, 100–118. [Google Scholar] [CrossRef]
- Mittermaier, M.P. Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 2007, 133, 1487–1500. [Google Scholar] [CrossRef]
- Lu, C.; Yuan, H.; Schwartz, B.E.; Benjamin, S.G. Short-range numerical weather prediction using time-lagged ensembles. Weather Forecast. 2007, 22, 580–595. [Google Scholar] [CrossRef]
- Yuan, H.; McGinley, J.A.; Schultz, P.J.; Anderson, C.J.; Lu, C. Short-range precipitation forecasts from time-lagged multimodel ensembles during the HMT-West-2006 campaign. J. Hydrometeorol. 2008, 9, 477–491. [Google Scholar] [CrossRef]
- Trilaksono, N.J.; Otsuka, S.; Yoden, S. A time-lagged ensemble simulation on the modulation of precipitation over West Java in January–February 2007. Mon. Weather Rev. 2012, 140, 601–616. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Cloud-resolving typhoon rainfall ensemble forecasts for Taiwan with large domain and extended range through time-lagged approach. Weather Forecast. 2016, 31, 151–172. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Paper of notes: Cloud-resolving, time-lagged typhoon rainfall ensemble forecasts. Bull. Am. Meteorol. Soc. 2016, 97, 1128–1129. [Google Scholar]
- Elsberry, R.L.; Tsai, H.-C.; Chin, W.-C.; Marchok, T.P. Predicting rapid intensification events following tropical cyclone formation in the western North Pacific based on ECMWF ensemble warm core evolutions. Atmosphere 2021, 12, 847. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, S.-H. High-resolution time-lagged ensemble quantitative precipitation forecasts (QPFs) for typhoons in Taiwan using the Cloud-Resolving Storm Simulator (CReSS). In Proceedings of the 4th WMO Workshop on Monsoon Heavy Rainfall (MHR-4): Science and Prediction of Monsoon Heavy Rainfall, Shenzhen, China, 16–18 April 2019. [Google Scholar]
- Wang, C.-C.; Chen, S.-H.; Chen, Y.-H.; Tsuboki, K. Cloud-resolving time-lagged rainfall ensemble forecasts for typhoons in Taiwan: Examples of Saola (2012), Soulik (2013), and Soudelor (2015). In Proceedings of the International Conference on Heavy Rainfall and Tropical Cyclone in East Asia (Virtual Meeting), Online, 1–3 March 2022. [Google Scholar]
- Hsu, H.-H.; Kuo, H.-C.; Jou, J.-D.; Chen, T.-C.; Lin, P.-H.; Yeh, T.-C.; Wu, C.-C. Scientific Report on Typhoon Morakot (2009); National Science Council: Taipei, Taiwan, 2010; 192p. (In Chinese) [Google Scholar]
- Wang, C.-C.; Kuo, H.-C.; Yeh, T.-C.; Chung, C.-H.; Chen, Y.-H.; Huang, S.-Y.; Wang, Y.-W.; Liu, C.-H. High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. 2013, 506, 26–41. [Google Scholar] [CrossRef]
- Wang, C.-C.; Chen, S.-H.; Tsuboki, K.; Huang, S.-Y.; Chang, C.-S. Application of time-lagged ensemble quantitative precipitation forecasts for Typhoon Morakot (2009) in Taiwan by a cloud-resolving model. Atmosphere 2022, 13, 585. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Y.; Kuo, Y.-H.; Whitaker, J.S.; Xie, B. Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Weather Forecast. 2010, 25, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Kuo, Y.-H.; Wang, A. The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Weather Forecast. 2011, 26, 613–633. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, E.A.; Jin, Y.; Moskaitis, J.R.; Doyle, J.D.; Peng, M.S.; Wu, C.-C.; Kuo, H.-C. Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model. Weather Forecast. 2016, 31, 627–645. [Google Scholar] [CrossRef]
- Racoma, B.A.B.; David, C.P.C.; Crisologo, I.A.; Bagtasa, G. The change in rainfall from tropical cyclones due to orographic effect of the Sierra Madre Mountain Range in Luzon, Philippines. Philipp. J. Sci. 2016, 145, 313–326. [Google Scholar]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. Climatol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Tripoli, G.J.; Rauber, R.M.; Mulvihill, E.A. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Clim. Appl. Meteorol. Climatol. 1986, 25, 1658–1680. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M. Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud—The 19 July 1981 CCOPE cloud. J. Meteorol. Soc. Jpn. 1990, 68, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, M.; Saito, K. Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Technol. Rep. 1991, 28, 238. [Google Scholar]
- Murakami, M.; Clark, T.L.; Hall, W.D. Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation. J. Meteorol. Soc. Jpn. 1994, 72, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Louis, J.F.; Tiedtke, M.; Geleyn, J.F. A short history of the operational PBL parameterization at ECMWF. In Proceedings of the Workshop on Planetary Boundary Layer Parameterization, 25–27 November 1981; ECMWF: Reading, UK, 1982; pp. 59–79. [Google Scholar]
- Kondo, J. Heat balance of the China Sea during the air mass transformation experiment. J. Meteorol. Soc. Jpn. 1976, 54, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Segami, A.; Kurihara, K.; Nakamura, H.; Ueno, M.; Takano, I.; Tatsumi, Y. 1989: Operational mesoscale weather prediction with Japan Spectral Model. J. Meteorol. Soc. Jpn. 1989, 67, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M. Description of the NMC global data assimilation and forecast system. Weather Forecast. 1989, 4, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.S.; Lord, S. 2009: Introduction of the GSI into the NCEP global data assimilation system. Weather Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, R.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 1995; p. 467. [Google Scholar]
- Wang, C.-C. On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Weather Forecast. 2014, 29, 788–798. [Google Scholar] [CrossRef]
- Roebber, P.J. Visualizing multiple measures of forecast quality. Weather Forecast. 2009, 24, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-H.; Wang, C.-C. Developing objective guidance for the quality of quantitative precipitation forecasts of westward-moving typhoons affecting Taiwan through machine learning. Atmos. Sci. 2022. accepted (In Chinese with English abstract). [Google Scholar]
- Roberts, N.M.; Lean, H.W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Yeh, T.-C.; Cayanan, E.O.; Hsiao, L.-F.; Chen, D.-S.; Tsai, Y.-T. A study of the rainfall and structural changes of Typhoon Koppu (2015) over northern Philippines. Terr. Atmos. Ocean. Sci. 2021, 32, 619–632. [Google Scholar] [CrossRef]
Map projection | Lambert Conformal (center at 123° E, secant at 5° N and 20° N) |
Grid spacing (km) | 2.5 × 2.5 × 0.1–0.5695 (0.4) * |
Grid dimension (x, y, z) | 864 × 696 × 50 |
Domain size (km) | 2160 × 1740 × 20 |
Forecast frequency | Every 6 h (at 0000, 0600, 1200, and 1800 UTC) |
Forecast length | 8 days (192 h) |
IC/BCs | NCEP GFS 0.5° × 0.5° analyses and forecasts (26 levels) |
Cloud microphysics | Double-moment bulk cold-rain scheme |
PBL parameterization | 1.5-order closure with turbulent kinetic energy prediction |
Surface processes | Shortwave/longwave radiation and momentum/energy fluxes |
Soil model | 43 levels, every 5 cm to 2.1 m in depth |
Observation | ||||
Yes (event) | No (no event) | Total | ||
Forecast | Yes (event) | Hits (H) | False alarm (FA) | Forecast yes (F) |
No (no event) | Misses (M) | Correct negatives (CN) | Forecast no | |
Total | Observation yes (O) | Observation no | Total points (N) |
Category/ Typhoon | Observed Peak Amount (mm) | TS at Threshold Value (mm) | Source | |||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 200 | 350 | 500 | 750 | |||
Taiwan, ≤72 h | ||||||||
Morakot (2009) | 1663 | 0.81 | 0.80 | 0.80 | 0.62 | 0.50 | 0.42 | [64] |
Fanapi (2010) | 1110 | 0.80 | 0.67 | 0.61 | 0.45 | 0.30 | 0.18 | [41] |
Saola (2012) | 889 | 0.89 | 0.81 | 0.67 | 0.41 | 0.22 | 0.05 | [45] |
Soudelor (2015) | 842 | 0.86 | 0.78 | 0.50 | 0.50 | 0.35 | 0.36 | [45] |
Fung-Wong (2014) | 797 | 0.76 | 0.70 | 0.32 | 0.33 | 0.33 | 0.00 | [45] |
Kong-Rey (2013) | 706 | 0.79 | 0.65 | 0.41 | 0.32 | 0.00 | - | [45] |
Tembin (2012) | 621 | 0.67 | 0.50 | 0.34 | 0.00 | 0.00 | - | [45] |
Matmo (2014) | 556 | 0.68 | 0.61 | 0.61 | 0.40 | 0.20 | - | [45] |
Nanmadol (2011) | 488 | 0.64 | 0.66 | 0.40 | 0.20 | - | - | [45] |
Talim (2012) | 415 | 0.72 | 0.58 | 0.38 | 0.38 | - | - | [55] |
Meranti (2011) | 298 | 0.42 | 0.12 | 0.00 | - | - | - | [41] |
Jelawat (2012) | 216 | 0.56 | 0.30 | 0.50 | - | - | - | [55] |
Philippines, ≤72 h | ||||||||
Mangkhut (2018) | 536 | 0.33 | 0.75 | 1.00 | 0.00 | 0.00 | - | F5b |
Koppu (2015) | 502 | 0.40 | 0.43 | 0.50 | 1.00 | 0.00 | - | F9c |
Melor (2015) | 274 | 0.50 | 0.43 | 0.25 | - | - | - | F14c |
Taiwan, >72 h | ||||||||
Saola (2012) | 884 # | 0.79 | 0.73 | 0.70 | 0.50 | 0.20 | 0.00 | [55] |
Tembin (2012) | 621 | 0.17 | 0.16 | 0.03 | 0.00 | 0.00 | - | [55] |
Kong-Rey (2013) | 426 # | 0.63 | 0.48 | 0.26 | 0.00 | - | - | [55] |
Talim (2012) | 415 | 0.70 | 0.30 | 0.21 | 0.00 | - | - | [55] |
Jelawat (2012) | 216 | 0.45 | 0.38 | 0.50 | - | - | - | [55] |
Philippines, >72 h | ||||||||
Mangkhut (2018) | 536 | 0.36 | 0.20 | 0.00 | 0.00 | 0.00 | - | F5b |
Koppu (2015) | 502 | 0.37 | 0.43 | 0.50 | 1.00 | 0.00 | - | F9c |
Melor (2015) | 274 | 0.47 | 0.50 | 0.50 | - | - | - | F14c |
Range/ Typhoon | Obs. Peak Amount (mm) | Length of Accum. | TS at Threshold Value (mm) | Source | ||||
---|---|---|---|---|---|---|---|---|
50 | 100 | 200 | 350 | 500 | ||||
t0 within 48 h | ||||||||
Mangkhut (2018) | 786 | 48 h | 0.54 | 0.41 | 0.46 | 0.00 | 0.00 | F5c |
Koppu (2015) | 695 | 72 h | 0.56 | 0.47 | 0.33 | 0.33 | 1.00 | F9d |
Melor (2015) | 407 | 72 h | 0.64 | 0.60 | 0.65 | 0.33 | - | F14d |
t0 beyond 48 h | ||||||||
Mangkhut (2018) | 786 | 48 h | 0.50 | 0.28 | 0.29 | 0.00 | 0.00 | F5c |
Koppu (2015) | 695 | 72 h | 0.52 | 0.47 | 0.27 | 0.33 | 0.33 | F9d |
Melor (2015) | 407 | 72 h | 0.55 | 0.42 | 0.31 | 0.00 | - | F14d |
Region/ Typhoon | Obs. Peak Amount (mm) | Length of Accum. | t0 within 48 h | t0 Beyond 48 h | Source | ||||
---|---|---|---|---|---|---|---|---|---|
Runs | SSS | ≥0.65 | Runs | SSS | ≥0.65 | ||||
Taiwan | |||||||||
Morakot (2009) | 2635 | 48 h | 9 | 0.33–0.94 | 5 (56%) | 18 | 0.00–0.23 | 0 (0%) | [60] |
Saola (2012) | 1298 | 48 h | 9 | 0.60–0.93 | 5 (56%) | 16 | 0.06–0.89 | 9 (56%) | [59] |
Soulik (2013) | 1054 | 24 h | 9 | 0.87–0.94 | 9 (100%) | 18 | 0.00–0.83 | 4 (22%) | [59] |
Soudelor (2015) | 1045 | 24 h | 9 | 0.86–0.92 | 9 (100%) | 19 | 0.03–0.87 | 5 (26%) | [59] |
Usagi (2013) | 758 | 36 h | 5 | 0.88–0.91 | 5 (100%) | 17 | 0.76–0.91 | 17 (100%) | [83] |
Dujuan (2015) | 716 | 32 h | 4 | 0.62–0.71 | 2 (50%) | 9 | 0.01–0.63 | 0 (0%) | [83] |
Nepartak (2016) | 643 | 56 h | 4 | 0.58–0.69 | 1 (25%) | 15 | 0.13–0.82 | 1 (7%) | [83] |
Fitow (2013) | 268 | 27 h | 4 | 0.67–0.85 | 4 (100%) | 5 | 0.70–0.90 | 5 (100%) | [83] |
Chan-Hom (2015) | 166 | 18 h | 4 | 0.50–0.73 | 2 (50%) | 13 | 0.17–0.76 | 1 (8%) | [83] |
Philippines | |||||||||
Mangkhut (2018) | 786 | 48 h | 9 | 0.49–0.73 | 3 (33%) | 8 | 0.34–0.54 | 0 (0%) | F5d |
Koppu (2015) | 695 | 72 h | 9 | 0.60–0.78 | 7 (78%) | 6 | 0.39–0.69 | 2 (33%) | F10a |
Melor (2015) | 407 | 72 h | 9 | 0.42–0.85 | 8 (89%) | 12 | 0.33–0.76 | 4 (33%) | F10b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Tsai, C.-H.; Jou, B.J.-D.; David, S.J. Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part I: Description and Verification against Rain-Gauge Observations. Atmosphere 2022, 13, 1193. https://doi.org/10.3390/atmos13081193
Wang C-C, Tsai C-H, Jou BJ-D, David SJ. Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part I: Description and Verification against Rain-Gauge Observations. Atmosphere. 2022; 13(8):1193. https://doi.org/10.3390/atmos13081193
Chicago/Turabian StyleWang, Chung-Chieh, Chien-Hung Tsai, Ben Jong-Dao Jou, and Shirley J. David. 2022. "Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part I: Description and Verification against Rain-Gauge Observations" Atmosphere 13, no. 8: 1193. https://doi.org/10.3390/atmos13081193
APA StyleWang, C. -C., Tsai, C. -H., Jou, B. J. -D., & David, S. J. (2022). Time-Lagged Ensemble Quantitative Precipitation Forecasts for Three Landfalling Typhoons in the Philippines Using the CReSS Model, Part I: Description and Verification against Rain-Gauge Observations. Atmosphere, 13(8), 1193. https://doi.org/10.3390/atmos13081193