Effects of Climate Change on Forest Regeneration in Central Spain
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Lloret, F.; Breshears, D.D. Drought-induced forest decline: Causes, scope and implications. Biol. Lett. 2012, 8, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Peñuelas, J.; Lloret, F.; Montoya, R. Severe drought effects on Mediterranean woody flora in Spain. For. Sci. 2001, 47, 214–218. [Google Scholar] [CrossRef]
- Landmann, G.; Dreyer, E. Impacts of drought and heat on forests. Synthesis of available knowledge, with emphasis on the 2003 event in Europe. Ann. For. Sci. 2006, 63, 567–568. [Google Scholar] [CrossRef][Green Version]
- Pardos, M.; Madrigal, G.; de Dios-García, J.; Gordo, J.; Calama, R. Sapling recruitment in mixed stands in the Northern Plateau of Spain: A patch model approach. Trees-Struct. Funct. 2021, 35, 2043–2058. [Google Scholar] [CrossRef]
- Marañón, T.; Zamora, R.; Villar, R.; Zavala, M.A.; Quero, J.L.; Pérez-Ramos, I.; Mendoza, I.; Castro, J. Regeneration of tree species and restoration under constrasted Mediterranean habitats: Field and glasshouse experiments. Int. J. Ecol. Environ. Sci. 2004, 30, 187–196. [Google Scholar]
- Matías, L.; Zamora, R.; Castro, J. Sporadic rainy events are more critical than increasing of drought intensity for woody species recruitment in a Mediterranean community. Oecologia 2012, 169, 833–844. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Camarero, J.J.; Dobbertin, M.; Fernández-Cancio, Á.; Vilà-Cabrera, A.; Manzanedo, R.D.; Zavala, M.A.; Navarro-Cerrillo, R.M. Contrasting vulnerability and resilience to drought-induced decline of densely planted vs. natural rear-edge Pinus nigra forests. For. Ecol. Manag. 2013, 310, 956–967. [Google Scholar] [CrossRef]
- Marqués, L.; Madrigal-González, J.; Zavala, M.A.; Camarero, J.J.; Hartig, F. Last-century forest productivity in a managed dry-edge Scots pine population: The two sides of climate warming. Ecol. Appl. 2018, 28, 95–105. [Google Scholar] [CrossRef]
- Hogg, E.H.; Schwarz, A.G. Regeneration of planted conifers across climatic moisture gradients on the Canadian prairies: Implications for distribution and climate change. J. Biogeogr. 1997, 24, 527–534. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Wommelsdorf, T.; Zhao, F.; Xue, Y.; Zhumadilov, B.Z.; Leuschner, C.; Hauck, M. Increased summer temperatures reduce the growth and regeneration of Larix sibirica in southern boreal forests of Eastern Kazakhstan. Ecosystems 2013, 16, 1536–1549. [Google Scholar] [CrossRef]
- Nardini, A.; Lo Gullo, M.A.; Trifilò, P.; Salleo, S. The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environ. Exp. Bot. 2014, 103, 68–79. [Google Scholar] [CrossRef]
- Calama, R.; Manso, R.; Lucas-Borja, M.; Espelta, J.; Piqué, M.; Bravo, F.; del Peso, C.; Pardos, M. Natural regeneration in Iberian pines: A review of dynamic processes and proposals for management. For. Syst. 2017, 26, eR02S. [Google Scholar] [CrossRef]
- Castro, J.; Zamora, R.; Hódar, J.A.; Gómez, J.M. Seedling establishment of a boreal tree species (Pinus sylvestris) at its southernmost distribution limit: Consequences of being in a marginal Mediterranean habitat. J. Ecol. 2004, 92, 266–277. [Google Scholar] [CrossRef]
- Benavides, R.; Escudero, A.; Coll, L.; Ferrandis, P.; Ogaya, R.; Gouriveau, F.; Peñuelas, J.; Valladares, F. Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: Not only climate matters. For. Ecol. Manag. 2016, 360, 287–296. [Google Scholar] [CrossRef]
- Karavani, A.; Boer, M.M.; Baudena, M.; Colinas, C.; Díaz-Sierra, R.; Pemán, J.; Luis, M.; Enríquez-de-Salamanca, Á.; Resco, V. Fire induced deforestation in drought-prone Mediterranean forests: Drivers and unknowns from leaves to communities. Ecol. Monogr. 2018, 88, 141–169. [Google Scholar] [CrossRef]
- Enríquez-de-Salamanca, Á. Dynamics of mediterranean pine forests reforested after fires. J. For. Res. 2022. [CrossRef]
- Gazol, A.; Camarero, J.J.; Sangüesa-Barreda, G.; Vicente-Serrano, S.M. Post-drought resilience after forest die-off: Shifts in regeneration, composition, growth and productivity. Front. Plant Sci. 2018, 871, 1546. [Google Scholar] [CrossRef]
- Mutke, S.; Gordo, J.; Gil, L. Variability of Mediterranean stone pine cone production: Yield loss as response to climate change. Agric. For. Meteorol. 2005, 132, 263–272. [Google Scholar] [CrossRef]
- Gentilesca, T.; Colangelo, M.; Nolè, A.; Ripullone, F.; Camarero, J.J. Drought-induced oak decline in the western Mediterranean region: An overview on current evidences, mechanisms and management options to improve forest resilience. iForest 2017, 10, 796–806. [Google Scholar] [CrossRef]
- Garcia-Fayos, P.; Monleon, V.J.; Espigares, T.; Nicolau, J.M.; Bochet, E. Increasing aridity threatens the sexual regeneration of Quercus ilex (holm oak) in Mediterranean ecosystems. PLoS ONE 2020, 15, e0239755. [Google Scholar] [CrossRef] [PubMed]
- Plieninger, T.; Rolo, V.; Moreno, G. Large-scale patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica regeneration in Central-Western Spain. Ecosystems 2010, 13, 644–660. [Google Scholar] [CrossRef]
- Lloret, F.; Siscart, D.; Dalmases, C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Chang. Biol. 2004, 10, 2092–2099. [Google Scholar] [CrossRef]
- Ibáñez, B.; Gómez-Aparicio, L.; Stoll, P.; Ávila, J.M.; Pérez-Ramos, I.M.; Marañón, T. A Neighborhood analysis of the consequences of Quercus suber decline for regeneration dynamics in Mediterranean forests. PLoS ONE 2015, 10, e0117827. [Google Scholar] [CrossRef]
- Saura-Mas, S.; Bonas, A.; Lloret, F. Plant community response to drought-induced canopy defoliation in a Mediterranean Quercus ilex forest. Eur. J. For. Res. 2015, 134, 261–272. [Google Scholar] [CrossRef]
- Calama, R.; Montero, G. Cone and seed production from stone pine (Pinus pinea L.) stands in Central Range (Spain). Eur. J. Forest. Res. 2017, 126, 23–35. [Google Scholar] [CrossRef]
- Lloret, F.; Peñuelas, J.; Prieto, P.; Llorens, L.; Estiarte, M. Plant community changes induced by experimental climate change: Seedling and adult species composition. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 53–63. [Google Scholar] [CrossRef]
- Pérez-Ramos, I.M.; Marañón, T. Community-level seedling dynamics in Mediterranean forests: Uncoupling between the canopy and the seedling layers. J. Veg. Sci. 2012, 23, 526–540. [Google Scholar] [CrossRef]
- WMO. State of the Global Climate 2021; World Meteorological Organization: Gèneve, Switzerland, 2022; Available online: https://library.wmo.int/doc_num.php?explnum_id=11178 (accessed on 5 June 2022).
- Gea-Izquierdo, G.; Montes, F.; Gavilán, R.G.; Cañellas, I.; Rubio, A. Is this the end? Dynamics of a relict stand from pervasively deforested ancient Iberian pine forests. Eur. J. For. Res. 2015, 134, 525–536. [Google Scholar] [CrossRef]
- Pardos, M.; Montes, F.; Aranda, I.; Cañellas, I. Influence of environmental conditions on germinant survival and diversity of Scots pine (Pinus sylvestris L.) in central Spain. Eur. J. For. Res. 2007, 126, 37–47. [Google Scholar] [CrossRef]
- Manso, R.; Calama, R.; Madrigal, G.; Pardos, M. A silvicultureoriented spatio-temporal model for germination in Pinus pinea L. in the Spanish Northern Plateau based on a direct seeding experiment. Eur. J. For. Res. 2013, 132, 969–982. [Google Scholar] [CrossRef][Green Version]
- Manso, R.; Pukkala, T.; Pardos, M.; Miina, J.; Calama, R. Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Can. J. For. Res. 2014, 44, 250–262. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Montes, F.; Sánchez-González, M.; Gordo, F.J.; Cañellas, I. Regeneration dynamics of mixed stands of Pinus pinaster Ait. and Pinus pinea L. in Central Spain. Eur. J. For. Res. 2018, 137, 17–27. [Google Scholar] [CrossRef]
- WMO. Guide to Climatological Practices; World Meteorological Organization, Gèneve, Switzerland. 2018. Available online: https://library.wmo.int/doc_num.php?explnum_id=5541 (accessed on 5 June 2022).
- AEMET. AEMET OpenData. Agencia Estatal de Meteorología. 2022. Available online: https://opendata.aemet.es/centrodedescargas/inicio (accessed on 7 June 2022).
- Thornthwaite, C.W.; Mather, J.R. The water balance. Publ. Climatol. 1955, 8, 5–86. [Google Scholar]
- Thornthwaite, C.W.; Mather, J.R. Instructions for evaluating the water balance. Publ. Climatol. 1957, 10, 185–204. [Google Scholar]
- Gaussen, H.; Bagnouls, F. Dry season and xerothermic index. Bull. Soc. Hist. Nat. Toulouse 1953, 88, 193–240. [Google Scholar]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Viñegla, B.; Lechuga, V.; Linares, J.C. Natural regeneration and drought effects in the Mediterranean basin. In Forest Management of Mediterranean Forests under the New Context of Climate Change: Building Alternatives for the Coming Future; Lucas-Borja, M.E., Ed.; Nova Science Publishers: New York, NY, USA, 2013; pp. 53–69. [Google Scholar]
- Will, R.E.; Wilson, S.M.; Zou, C.B.; Hennessey, T.C. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest–grassland ecotone. New Phytol. 2013, 200, 366–374. [Google Scholar] [CrossRef]
- Broz, A.; Retallack, G.J.; Maxwell, T.M.; Silva, L.C.R. A record of vapour pressure deficit preserved in wood and soil across biomes. Sci. Rep. 2021, 11, 662. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. 2020, 226, 1550–1566. [Google Scholar] [CrossRef]
- McDowell, N.; Pockman, W.T.; Allen, C.D.; Breshears, D.D.; Cobb, N.; Kolb, T.; Plaut, J.; Sperry, J.; West, A.; Williams, D.G.; et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol. 2008, 178, 719–739. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Qin, Z.; Lin, S.; Chen, X.; Chen, B.; He, B.; Wei, J.; Yuan, W. Large influence of atmospheric vapor pressure deficit on ecosystem production efficiency. Nat. Commun. 2022, 13, 1653. [Google Scholar] [CrossRef] [PubMed]
- AdapteCCa. Visor de escenarios de cambio climático. Plataforma Sobre Adaptación al Cambio Climático en España. Ministerio para la Transición Ecológica y el Reto Demográfico. 2022. Available online: https://escenarios.adaptecca.es (accessed on 8 June 2022).
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Martinez-Vilalta, J.; Piñol, J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For. Ecol. Manag. 2002, 161, 247–256. [Google Scholar] [CrossRef]
- Fernández, A.; Navarro, R.M.; Sánchez, R.; Fernández, R.; Manrique, E. Viabilidad fitoclimática de las repoblaciones de pino silvestre (Pinus sylvestris L.) en la Sierra de los Filabres (Almería). Ecosistemas 2011, 20, 124–144. [Google Scholar]
- Sánchez de Dios, R.; Benito-Garzón, M.; Sainz-Ollero, H. Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant. Ecol. 2009, 204, 189–205. [Google Scholar] [CrossRef]
- Rubio-Cuadrado, Á.; Camarero, J.J.; Aspizua, R.; Sánchez-González, M.; Gil, L.; Montes, F. Abiotic factors modulate post-drought growth resilience of Scots pine plantations and rear-edge Scots pine and oak forests. Dendrochronologia 2018, 51, 54–65. [Google Scholar] [CrossRef]
- Peñuelas, J.; Ogaya, R.; Boada, M.; Jump, A.S. Migration, invasion and decline: Changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 2007, 30, 829–837. [Google Scholar] [CrossRef]
- Mendoza, I.; Zamora, R.; Castro, J. A seeding experiment for testing tree-community recruitment under variable environments: Implications for forest regeneration and conservation in Mediterranean habitats. Biol. Conserv. 2009, 142, 1491–1499. [Google Scholar] [CrossRef]
- Chirino, E.; Vilagrosa, A.; Cortina, J.; Valdecantos, A.; Fuentes, D.; Trubat, R.; Luis, V.C.; Puértolas, J.; Bautista, S.; Baeza, M.J.; et al. Ecological restoration in degraded drylands: The need to improve the seedling quality and site conditions in the field. In Forest Management; Grossberg, S.P., Ed.; Nova Science Publishers: New York, NY, USA, 2009; pp. 85–158. [Google Scholar]
- Hlásny, T.; Mátyás, C.; Seidl, R.; Kulla, L.; Merganicová, K.; Trombik, J.; Dobor, L.; Barcza, Z.; Konôpka, B. Climate change increases the drought risk in central European forests: What are the options for adaptation? Lesn. Cas. For. J. 2014, 60, 5–18. [Google Scholar] [CrossRef]
- Konnert, M.; Fady, B.; Gömöry, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; Maaten, T.; Kowalczyk, J. Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change; Euforgen, Bioversity International: Rome, Italy, 2015. [Google Scholar]
- Seidel, H.; Schunk, C.; Matiu, M.; Menzel, A. Diverging drought resistance of scots pine provenances revealed by infrared thermography. Front. Plant Sci. 2016, 7, 1247. [Google Scholar] [CrossRef] [PubMed]
Code | Name | X | Y | Elevation | Period |
---|---|---|---|---|---|
3195 | Madrid—Retiro | 442470 | 4473702 | 667 m | 1952–2021 |
3196 | Madrid—Cuatro Vientos | 433267 | 4469738 | 690 m | 1952–2021 |
3191E | Colmenar Viejo-FAMET | 435367 | 4505305 | 1004 m | 1978–2021 |
2465 | Segovia | 405190 | 4533294 | 1005 m | 1960–2021 |
2462 | Puerto de Navacerrada | 414745 | 4516276 | 1894 m | 1952–2021 |
Parameter | Code | Period | Unit |
---|---|---|---|
Mean temperature | TA | Annual | °C |
TS | July–August | °C | |
TSE | June–September | °C | |
Rainfall | RA | Annual | mm |
RS | July–August | mm | |
RSE | June–September | mm | |
Potential evapotranspiration | PETA | Annual | mm |
PETS | July–August | mm | |
PETSE | June–September | mm | |
Physiological drought | PDA | Annual | mm |
PDS | July–August | mm | |
PDSE | June–September | mm | |
Summer drought | SD | Annual | days |
Par | 3195 | 3196 | 3191E | 2465 | 2462 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | r | R2 | p | r | R2 | p | r | R2 | p | Corr | r | p | r | R2 | |
SD | 0.4830 | 0.0852 | 0.7264 | 0.3520 | 0.1129 | 1.2750 | 0.6480 | 0.0708 | 0.5001 | 0.1552 | 0.1717 | 2.9482 | 0.4709 | 0.0933 | 0.8697 |
TA | 0.0000 | 0.7921 | 62.7371 | 0.0000 | 0.8033 | 64.5347 | 0.0875 | 0.2606 | 6.7937 | 0.0000 | 0.7163 | 51.3114 | 0.0000 | 0.6194 | 38.3613 |
TS | 0.0000 | 0.7527 | 56.6554 | 0.0000 | 0.7526 | 56.6352 | 0.0177 | 0.3561 | 12.6823 | 0.0032 | 0.3473 | 12.0624 | 0.0008 | 0.4140 | 17.1413 |
TSE | 0.0000 | 0.7806 | 60.9265 | 0.0000 | 0.7705 | 59.3644 | 0.0110 | 0.3798 | 14.4259 | 0.0000 | 0.6699 | 44.8790 | 0.0002 | 0.4620 | 21.3438 |
RA | 0.2638 | −0.1354 | 1.8325 | 0.0480 | −0.2372 | 5.6745 | 0.7948 | 0.0403 | 0.1628 | 0.1982 | −0.1557 | 2.4228 | 0.7554 | −0.0404 | 0.1630 |
RS | 0.6845 | −0.0494 | 0.2443 | 0.5273 | −0.0768 | 0.5903 | 0.7365 | −0.0522 | 0.2723 | 0.9836 | 0.0025 | 0.0006 | 0.4111 | 0.1063 | 1.1292 |
RSE | 0.1914 | −0.1580 | 2.4967 | 0.0696 | −0.2182 | 4.7613 | 0.3916 | −0.1324 | 1.7525 | 0.0099 | −0.3063 | 9.3802 | 0.2463 | −0.1495 | 2.2341 |
PETA | 0.0000 | 0.7908 | 62.5410 | 0.0000 | 0.8029 | 64.4627 | 0.0000 | 0.5859 | 34.3324 | 0.0000 | 0.6123 | 37.4948 | 0.0000 | 0.5802 | 33.6659 |
PETS | 0.0000 | 0.7417 | 55.0156 | 0.0000 | 0.7401 | 54.7804 | 0.0445 | 0.3045 | 9.2696 | 0.0000 | 0.4703 | 22.1158 | 0.0083 | 0.0332 | 11.0506 |
PETSE | 0.0000 | 0.7735 | 59.8260 | 0.0000 | 0.7611 | 57.9236 | 0.0363 | 0.3165 | 10.0180 | 0.0000 | 0.6181 | 38.2090 | 0.0020 | 0.3850 | 14.8222 |
PDA | 0.0005 | 0.4027 | 16.2135 | 0.0002 | 0.4258 | 18.1314 | 0.5348 | 0.0961 | 0.9242 | 0.0025 | 0.3556 | 12.6419 | 0.1916 | 0.1681 | 2.8252 |
PDS | 0.0000 | 0.5510 | 30.3551 | 0.0000 | 0.5320 | 28.3032 | 0.1396 | 0.2263 | 5.1233 | 0.0046 | 0.3351 | 11.2291 | 0.0000 | 0.5647 | 31.8839 |
PDSE | 0.0000 | 0.4755 | 22.6131 | 0.0000 | 0.5333 | 28.4355 | 0.0953 | 0.2547 | 6.4845 | 0.0021 | 0.3610 | 13.0348 | 0.1002 | 0.2107 | 4.4411 |
Period | Est | 1st Regression | 2nd Regression | 3rd Regression | 4rd Regression | Remain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p | R2adj | Out | p | R2adj | Out | p | R2adj | Out | p | R2adj | Out | |||
Summer SD + ∑XS | 3195 | 0.0000 | 54.9726 | SD | 0.0000 | 55.6536 | PDS | 0.0000 | 56.2178 | RS | 0.0000 | 56.1576 | PETS | TS |
3196 | 0.0000 | 54.2578 | SD | 0.0000 | 54.9487 | PDS | 0.0000 | 55.6154 | RS | 0.0000 | 56.0413 | PETS | TS | |
3191E | 0.2872 | 3.2982 | RS | 0.1795 | 5.7636 | SD | 0.0967 | 8.0560 | PETS | 0.0444 | 9.9092 | PDS | TS | |
2465 | 0.0001 | 31.0426 | SD | 0.0000 | 32.0316 | RS | 0.0000 | 32.6101 | PDS | 0.0000 | 30.3015 | - | TS + PETS | |
2462 | 0.0000 | 43.8003 | SD | 0.0000 | 44.6218 | PDS | 0.0000 | 43.6710 | RS | 0.0000 | 43.2437 | - | TS + PETS | |
Expanded summer SD + ∑XSE | 3195 | 0.0000 | 57.4294 | PDSE | 0.0000 | 58.0825 | PETSE | 0.0000 | 58.6507 | RSE | 0.0000 | 59.1684 | SD | TSE |
3196 | 0.0000 | 60.0179 | PETSE | 0.0000 | 60.5997 | RSE | 0.0000 | 61.1009 | PDSE | 0.0000 | 61.3526 | SD | TSE | |
3191E | 0.1071 | 10.0407 | PDSE | 0.0587 | 12.1870 | PETSE | 0.0388 | 12.6003 | SD | 0.0217 | 12.9929 | RSE | TSE | |
2465 | 0.0002 | 29.0314 | SD | 0.0001 | 30.2764 | RSE | 0.0001 | 27.3419 | PDSE | 0.0000 | 26.9267 | - | TSE + PETSE | |
2462 | 0.0000 | 42.6008 | RSE | 0.0000 | 43.4835 | PDSE | 0.0000 | 43.7984 | SD | 0.0000 | 44.1704 | PETSE | TSE |
Par | 1962–1981 | 1982–2001 | 2002–2021 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3195 | 3196 | 2465 | 2462 | 3195 | 3196 | 3191E | 2465 | 2462 | 3195 | 3196 | 3191E | 2465 | 2462 | |
SD | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
TA | - | - | - | - | - | 0.0154 | - | - | - | 0.0256 | 0.0235 | 0.0200 | - | 0.0142 |
TS | - | - | 0.0353 | - | - | - | - | - | - | 0.0042 | 0.0251 | 0.0165 | - | 0.0500 |
TSE | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
RA | - | - | - | - | - | - | - | 0.029 | - | - | - | - | - | - |
RS | - | - | - | - | - | - | - | - | - | - | 0.0307 | - | - | - |
RSE | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PETA | - | - | 0.0266 | - | - | 0.0098 | - | - | - | - | - | - | - | - |
PETS | - | - | 0.0421 | - | - | - | - | - | - | 0.0048 | 0.0284 | 0.0271 | - | - |
PETSE | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
PDA | - | - | - | - | - | - | - | 0.0196 | - | - | - | - | - | - |
PDS | - | - | - | - | - | 0.0195 | - | - | - | - | - | - | - | - |
PDSE | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Meteorological Station | Municipality | PET (mm/Month) | |||
---|---|---|---|---|---|
Scenario RCP 4.5 | Scenario RCP 8.5 | ||||
2021 | 2100 | 2021 | 2100 | ||
3195, 3196 | Madrid | 66.98 | 72.37 | 68.56 | 92.03 |
3191E | Colmenar Viejo | 57.47 | 62.60 | 58.70 | 70.17 |
2465 | Segovia | 63.41 | 69.99 | 64.67 | 78.79 |
2462 | San Ildefonso | 63.88 | 70.03 | 65.26 | 79.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enríquez-de-Salamanca, Á. Effects of Climate Change on Forest Regeneration in Central Spain. Atmosphere 2022, 13, 1143. https://doi.org/10.3390/atmos13071143
Enríquez-de-Salamanca Á. Effects of Climate Change on Forest Regeneration in Central Spain. Atmosphere. 2022; 13(7):1143. https://doi.org/10.3390/atmos13071143
Chicago/Turabian StyleEnríquez-de-Salamanca, Álvaro. 2022. "Effects of Climate Change on Forest Regeneration in Central Spain" Atmosphere 13, no. 7: 1143. https://doi.org/10.3390/atmos13071143
APA StyleEnríquez-de-Salamanca, Á. (2022). Effects of Climate Change on Forest Regeneration in Central Spain. Atmosphere, 13(7), 1143. https://doi.org/10.3390/atmos13071143