A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities
Abstract
1. Introduction
2. Data and Methods
2.1. Typhoon Observation
2.2. Kernel Density Estimation
2.3. Generalised Additive Model
2.4. Outline of Simulation
- The month corresponding to typhoon genesis and the track, are calculated. Then, the GAM is fitted to the track increments by calculating the track velocities.
- A GAM is fitted to the velocity for the prediction. Each velocity is considered as a smooth function of location in each month.
- KDE approximates the distribution of genesis points, and the kernel bandwidth is considered automatically using a standard plug-in estimator.
- Samples are drawn using a Gaussian mixture. Random samples of 200 genesis points are chosen from each of the densities.
- The trajectories take a matrix of initial points, and an array of stochastic innovations is applied at each time step. A 7-day life span is considered.
2.5. Skill and Validation
3. Results and Discussion
4. Summary
- Kernel density estimation is an effective method to estimate the distribution of typhoon genesis points. Using the kernel density estimation, the modeled genesis distribution can reproduce the observed genesis.
- A novel generalized additive model (GAM) has skill to reproduce the track in each season by creating a velocity field.
- The highest percentage of typhoon genesis is seen in July–September among all twelve months and the modeled genesis distributions are consistent with observations.
- The model shows 75% skill using a distance calculation approach between observed and simulated track locations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gao, S.; Chen, Z.; Zhang, W. Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster analysis of typhoon tracks: Part II: Large-scale circulation and ENSO. J. Clim. 2007, 20, 3654–3676. [Google Scholar] [CrossRef]
- Harr, P.A.; Elsberry, R.L. Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Weather Rev. 1995, 123, 1225–1246. [Google Scholar] [CrossRef]
- Tsou, C.-H.; Huang, P.-Y.; Tu, C.-Y.; Chen, C.-T.; Tzeng, T.-P.; Cheng, C.T. Present simulation and future typhoon activity projection over western North Pacific and Taiwan/east coast of China in 20-km HiRAM climate model. Terr. Atmos. Ocean. Sci. 2016, 27, 687–703. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef]
- Bengtsson, L.; Hodges, K.I.; Esch, M.; Keenlyside, N.; Kornblueh, L.; Luo, J.-J.; Yamagata, T. How may tropical cyclones change in a warmer climate? Tellus 2007, 59, 539–561. [Google Scholar] [CrossRef]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Rashid, H.; Uotila, P.; Hirst, A.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2012, 63, 41–64. [Google Scholar] [CrossRef]
- Camargo, S.J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 2013, 26, 9880–9902. [Google Scholar] [CrossRef]
- Camargo, S.J.; Zebiak, S.E. Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forecast. 2002, 17, 1152–1162. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H.; Delgenio, A.D.; Jonas, J.A.; Kelley, M.; Lu, Y.; Shaevitz, D.A.; Henderson, N. Tropical cyclones in the GISS ModelE2. Tellus 2016, 68, 31494. [Google Scholar] [CrossRef]
- Chand, S.S.; Tory, K.J.; Ye, H.; Walsh, K.J.E. Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat. Clim. Chang. 2017, 7, 123–127. [Google Scholar] [CrossRef]
- Colbert, A.J.; Soden, B.J.; Kirtman, B.P. The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Clim. 2015, 28, 1806–1823. [Google Scholar] [CrossRef]
- Collier, M.A.; Jeffrey, S.J.; Rotstayn, L.D.; Wong, K.K.; Dravitzki, S.M.; Moseneder, C.; Hamalainen, C.; Syktus, J.I.; Suppiah, R.; Antony, J.; et al. The CSIRO-Mk3.6.0 atmosphere–ocean GCM: Participation in CMIP5 and data publication. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 2691–2697. [Google Scholar]
- Davis, C.A. Resolving tropical cyclone intensity in models. Geophys. Res. Lett. 2018, 45, 2082–2087. [Google Scholar] [CrossRef]
- Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.C.; Ginoux, P.; Lin, S.J.; Schwarzkopf, M.D.; et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Clim. 2011, 24, 3484–3519. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Montgomery, M.T.; Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. 2009, 9, 5587–5646. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Hawkins, E.; Osbourne, T.M.; Ho, C.K.; Challinor, A.J. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteorol. 2013, 170, 19–31. [Google Scholar] [CrossRef]
- Held, I.M.; Zhao, M. The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Clim. 2011, 24, 5353–5364. [Google Scholar] [CrossRef]
- Ho, C.K.; Stephenson, D.B.; Collins, M.; Ferro, C.A.T.; Brown, S.J. A source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc. 2012, 93, 21–26. [Google Scholar] [CrossRef]
- Horn, M.; Walsh, K.; Zhao, M.; Camargo, S.J.; Scoccimarro, E.; Murakami, H.; Wang, H.; Ballinger, A.; Kumar, A.; Shaevitz, D.A.; et al. Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Clim. 2014, 27, 9197–9213. [Google Scholar] [CrossRef]
- Jin, C.-S.; Cha, D.-H.; Suh, M.-S.; Hong, S.-Y.; Kang, H.-S.; Ho, C.-H. Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim. Dyn. 2016, 47, 765–778. [Google Scholar] [CrossRef]
- Jones, C.D.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O’connor, F.M.; Andres, R.J.; Bell, C.; et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 2011, 4, 543–570. [Google Scholar] [CrossRef]
- Kossin, J.P.; Emanuel, K.A.; Camargo, S.J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 2016, 29, 5725–5739. [Google Scholar] [CrossRef]
- Mori, M.; Kimoto, M.; Ishii, M.; Yokoi, S.; Mochizuki, T.; Chikamoto, Y.; Watanabe, M.; Nozawa, T.; Tatebe, H.; Sakamoto, T.T.; et al. Hindcast prediction and nearfuture projection of tropical cyclone activity over the western North Pacific using CMIP5 near-term experiments with MIROC. J. Meteorol. Soc. Jpn. 2013, 91, 431–452. [Google Scholar] [CrossRef][Green Version]
- Murakami, H.; Wang, B.; Kitoh, A. Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Clim. 2011, 24, 1154–1169. [Google Scholar] [CrossRef]
- Nakamura, J.; Camargo, S.J.; Sobel, A.H.; Henderson, N.; Emanuel, K.A.; Kumar, A.; LaRow, T.E.; Murakami, H.; Roberts, M.J.; Scoccimarro, E.; et al. Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos. 2017, 122, 9721–9744. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Ho, C.-H.; Chan, J.C.L.; Ha, K.-J.; Kim, H.-S.; Kim, J.; Kim, J.H. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections. Sci. Rep. 2017, 7, 41354. [Google Scholar] [CrossRef]
- Patricola, C.M.; Camargo, S.J.; Klotzbach, P.J.; Saravanan, R.; Chang, P. The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Clim. 2018, 31, 5395–5416. [Google Scholar] [CrossRef]
- Shaevitz, D.A.; Camargo, S.J.; Sobel, A.H.; Jonas, J.A.; Kim, D.; Kumar, A.; LaRow, T.E.; Lim, Y.K.; Murakami, H.; Reed, K.A.; et al. Characteristics of tropical cyclones in high-resolution models of the present climate. J. Adv. Model. Earth Syst. 2014, 6, 1154–1172. [Google Scholar] [CrossRef]
- Wahiduzzaman, M. Major Floods and Tropical Cyclones over Bangladesh: Clustering from ENSO Timescales. Atmosphere 2021, 12, 697. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A. Statistical forecasting of tropical cyclone landfall activities over the North Indian Ocean rim. Atmos. Res. 2019, 227, 89–100. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A. A kernel density estimation approach of North Indian Ocean tropical cyclone formation and the association with convective available potential energy and equivalent potential temperature. Meteorol. Atmos. Phys. 2020, 132, 603–612. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A.; Luo, J.J. Seasonal movement prediction of tropical cyclone over the North Indian Oceans by using atmospheric climate variables in statistical models. Atmos. Res. 2020, 245, 105089. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Oliver, E.C.J.; Wotherspoon, S.J.; Holbrook, N.J. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall. Clim. Dyn. 2017, 49, 2585–2603. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Oliver, E.C.J.; Klotzbach, P.J.; Wotherspoon, S.J.; Holbrook, N.J. A statistical seasonal forecast model of North Indian Ocean tropical cyclones using the Quasi-biennial Oscillation. Int. J. Climatol. 2019, 39, 934–952. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L. Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Adv. Atmos. Sci. 2015, 32, 613–623. [Google Scholar] [CrossRef]
- Wang, R.; Wu, L.; Wang, C. Typhoon track changes associated with global warming. J. Clim. 2011, 24, 3748–3752. [Google Scholar] [CrossRef]
- Yokoi, S.; Takayabu, Y.N.; Murakami, H. Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Clim. 2013, 26, 4096–4111. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Villarini, G.; Murakami, H.; Gudgel, R.; Yang, X. Statistical–dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the GFDL FLOR coupled climate model. J. Clim. 2017, 30, 2209–2232. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Wu, L.-G.; Zou, X.-K. Changes of tropical cyclone tracks in the western North Pacific over 1979–2016. Adv. Clim. Change Res. 2018, 9, 170–176. [Google Scholar] [CrossRef]
- Chan, J.C.L. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wahiduzzaman, M.; Yeasmin, A. A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere 2022, 13, 1128. https://doi.org/10.3390/atmos13071128
Wang X, Wahiduzzaman M, Yeasmin A. A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere. 2022; 13(7):1128. https://doi.org/10.3390/atmos13071128
Chicago/Turabian StyleWang, Xiang, Md Wahiduzzaman, and Alea Yeasmin. 2022. "A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities" Atmosphere 13, no. 7: 1128. https://doi.org/10.3390/atmos13071128
APA StyleWang, X., Wahiduzzaman, M., & Yeasmin, A. (2022). A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere, 13(7), 1128. https://doi.org/10.3390/atmos13071128