A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities
Abstract
:1. Introduction
2. Data and Methods
2.1. Typhoon Observation
2.2. Kernel Density Estimation
2.3. Generalised Additive Model
2.4. Outline of Simulation
- The month corresponding to typhoon genesis and the track, are calculated. Then, the GAM is fitted to the track increments by calculating the track velocities.
- A GAM is fitted to the velocity for the prediction. Each velocity is considered as a smooth function of location in each month.
- KDE approximates the distribution of genesis points, and the kernel bandwidth is considered automatically using a standard plug-in estimator.
- Samples are drawn using a Gaussian mixture. Random samples of 200 genesis points are chosen from each of the densities.
- The trajectories take a matrix of initial points, and an array of stochastic innovations is applied at each time step. A 7-day life span is considered.
2.5. Skill and Validation
3. Results and Discussion
4. Summary
- Kernel density estimation is an effective method to estimate the distribution of typhoon genesis points. Using the kernel density estimation, the modeled genesis distribution can reproduce the observed genesis.
- A novel generalized additive model (GAM) has skill to reproduce the track in each season by creating a velocity field.
- The highest percentage of typhoon genesis is seen in July–September among all twelve months and the modeled genesis distributions are consistent with observations.
- The model shows 75% skill using a distance calculation approach between observed and simulated track locations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gao, S.; Chen, Z.; Zhang, W. Impacts of tropical North Atlantic SST on western North Pacific landfalling tropical cyclones. J. Clim. 2018, 31, 853–862. [Google Scholar] [CrossRef]
- Camargo, S.J.; Robertson, A.W.; Gaffney, S.J.; Smyth, P.; Ghil, M. Cluster analysis of typhoon tracks: Part II: Large-scale circulation and ENSO. J. Clim. 2007, 20, 3654–3676. [Google Scholar] [CrossRef]
- Harr, P.A.; Elsberry, R.L. Large-scale circulation variability over the tropical western North Pacific. Part I: Spatial patterns and tropical cyclone characteristics. Mon. Weather Rev. 1995, 123, 1225–1246. [Google Scholar] [CrossRef] [Green Version]
- Tsou, C.-H.; Huang, P.-Y.; Tu, C.-Y.; Chen, C.-T.; Tzeng, T.-P.; Cheng, C.T. Present simulation and future typhoon activity projection over western North Pacific and Taiwan/east coast of China in 20-km HiRAM climate model. Terr. Atmos. Ocean. Sci. 2016, 27, 687–703. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Hodges, K.I.; Esch, M.; Keenlyside, N.; Kornblueh, L.; Luo, J.-J.; Yamagata, T. How may tropical cyclones change in a warmer climate? Tellus 2007, 59, 539–561. [Google Scholar] [CrossRef] [Green Version]
- Bi, D.; Dix, M.; Marsland, S.; O’Farrell, S.; Rashid, H.; Uotila, P.; Hirst, A.; Kowalczyk, E.; Golebiewski, M.; Sullivan, A.; et al. The ACCESS coupled model: Description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 2012, 63, 41–64. [Google Scholar] [CrossRef]
- Camargo, S.J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 2013, 26, 9880–9902. [Google Scholar] [CrossRef] [Green Version]
- Camargo, S.J.; Zebiak, S.E. Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forecast. 2002, 17, 1152–1162. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H.; Delgenio, A.D.; Jonas, J.A.; Kelley, M.; Lu, Y.; Shaevitz, D.A.; Henderson, N. Tropical cyclones in the GISS ModelE2. Tellus 2016, 68, 31494. [Google Scholar] [CrossRef] [Green Version]
- Chand, S.S.; Tory, K.J.; Ye, H.; Walsh, K.J.E. Projected increase in El Niño-driven tropical cyclone frequency in the Pacific. Nat. Clim. Chang. 2017, 7, 123–127. [Google Scholar] [CrossRef]
- Colbert, A.J.; Soden, B.J.; Kirtman, B.P. The impact of natural and anthropogenic climate change on western North Pacific tropical cyclone tracks. J. Clim. 2015, 28, 1806–1823. [Google Scholar] [CrossRef]
- Collier, M.A.; Jeffrey, S.J.; Rotstayn, L.D.; Wong, K.K.; Dravitzki, S.M.; Moseneder, C.; Hamalainen, C.; Syktus, J.I.; Suppiah, R.; Antony, J.; et al. The CSIRO-Mk3.6.0 atmosphere–ocean GCM: Participation in CMIP5 and data publication. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 2691–2697. [Google Scholar]
- Davis, C.A. Resolving tropical cyclone intensity in models. Geophys. Res. Lett. 2018, 45, 2082–2087. [Google Scholar] [CrossRef]
- Donner, L.J.; Wyman, B.L.; Hemler, R.S.; Horowitz, L.W.; Ming, Y.; Zhao, M.; Golaz, J.C.; Ginoux, P.; Lin, S.J.; Schwarzkopf, M.D.; et al. The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J. Clim. 2011, 24, 3484–3519. [Google Scholar] [CrossRef]
- Dunkerton, T.J.; Montgomery, M.T.; Wang, Z. Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys. 2009, 9, 5587–5646. [Google Scholar] [CrossRef] [Green Version]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.A.; Villarini, G.; Chavas, D. Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Gray, W.M. Global view of the origin of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. [Google Scholar] [CrossRef]
- Hawkins, E.; Osbourne, T.M.; Ho, C.K.; Challinor, A.J. Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteorol. 2013, 170, 19–31. [Google Scholar] [CrossRef]
- Held, I.M.; Zhao, M. The response of tropical cyclone statistics to an increase in CO2 with fixed sea surface temperatures. J. Clim. 2011, 24, 5353–5364. [Google Scholar] [CrossRef]
- Ho, C.K.; Stephenson, D.B.; Collins, M.; Ferro, C.A.T.; Brown, S.J. A source of additional uncertainty in climate change projections. Bull. Am. Meteorol. Soc. 2012, 93, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Horn, M.; Walsh, K.; Zhao, M.; Camargo, S.J.; Scoccimarro, E.; Murakami, H.; Wang, H.; Ballinger, A.; Kumar, A.; Shaevitz, D.A.; et al. Tracking scheme dependence of simulated tropical cyclone response to idealized climate simulations. J. Clim. 2014, 27, 9197–9213. [Google Scholar] [CrossRef]
- Jin, C.-S.; Cha, D.-H.; Suh, M.-S.; Hong, S.-Y.; Kang, H.-S.; Ho, C.-H. Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim. Dyn. 2016, 47, 765–778. [Google Scholar] [CrossRef]
- Jones, C.D.; Hughes, J.K.; Bellouin, N.; Hardiman, S.C.; Jones, G.S.; Knight, J.; Liddicoat, S.; O’connor, F.M.; Andres, R.J.; Bell, C.; et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 2011, 4, 543–570. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P.; Emanuel, K.A.; Camargo, S.J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. 2016, 29, 5725–5739. [Google Scholar] [CrossRef]
- Mori, M.; Kimoto, M.; Ishii, M.; Yokoi, S.; Mochizuki, T.; Chikamoto, Y.; Watanabe, M.; Nozawa, T.; Tatebe, H.; Sakamoto, T.T.; et al. Hindcast prediction and nearfuture projection of tropical cyclone activity over the western North Pacific using CMIP5 near-term experiments with MIROC. J. Meteorol. Soc. Jpn. 2013, 91, 431–452. [Google Scholar] [CrossRef] [Green Version]
- Murakami, H.; Wang, B.; Kitoh, A. Future change of western North Pacific typhoons: Projections by a 20-km-mesh global atmospheric model. J. Clim. 2011, 24, 1154–1169. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Camargo, S.J.; Sobel, A.H.; Henderson, N.; Emanuel, K.A.; Kumar, A.; LaRow, T.E.; Murakami, H.; Roberts, M.J.; Scoccimarro, E.; et al. Western North Pacific tropical cyclone model tracks in present and future climates. J. Geophys. Res. Atmos. 2017, 122, 9721–9744. [Google Scholar] [CrossRef]
- Park, D.-S.R.; Ho, C.-H.; Chan, J.C.L.; Ha, K.-J.; Kim, H.-S.; Kim, J.; Kim, J.H. Asymmetric response of tropical cyclone activity to global warming over the North Atlantic and western North Pacific from CMIP5 model projections. Sci. Rep. 2017, 7, 41354. [Google Scholar] [CrossRef] [Green Version]
- Patricola, C.M.; Camargo, S.J.; Klotzbach, P.J.; Saravanan, R.; Chang, P. The influence of ENSO flavors on western North Pacific tropical cyclone activity. J. Clim. 2018, 31, 5395–5416. [Google Scholar] [CrossRef]
- Shaevitz, D.A.; Camargo, S.J.; Sobel, A.H.; Jonas, J.A.; Kim, D.; Kumar, A.; LaRow, T.E.; Lim, Y.K.; Murakami, H.; Reed, K.A.; et al. Characteristics of tropical cyclones in high-resolution models of the present climate. J. Adv. Model. Earth Syst. 2014, 6, 1154–1172. [Google Scholar] [CrossRef]
- Wahiduzzaman, M. Major Floods and Tropical Cyclones over Bangladesh: Clustering from ENSO Timescales. Atmosphere 2021, 12, 697. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A. Statistical forecasting of tropical cyclone landfall activities over the North Indian Ocean rim. Atmos. Res. 2019, 227, 89–100. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A. A kernel density estimation approach of North Indian Ocean tropical cyclone formation and the association with convective available potential energy and equivalent potential temperature. Meteorol. Atmos. Phys. 2020, 132, 603–612. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Yeasmin, A.; Luo, J.J. Seasonal movement prediction of tropical cyclone over the North Indian Oceans by using atmospheric climate variables in statistical models. Atmos. Res. 2020, 245, 105089. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Oliver, E.C.J.; Wotherspoon, S.J.; Holbrook, N.J. A climatological model of North Indian Ocean tropical cyclone genesis, tracks and landfall. Clim. Dyn. 2017, 49, 2585–2603. [Google Scholar] [CrossRef]
- Wahiduzzaman, M.; Oliver, E.C.J.; Klotzbach, P.J.; Wotherspoon, S.J.; Holbrook, N.J. A statistical seasonal forecast model of North Indian Ocean tropical cyclones using the Quasi-biennial Oscillation. Int. J. Climatol. 2019, 39, 934–952. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L. Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Adv. Atmos. Sci. 2015, 32, 613–623. [Google Scholar] [CrossRef]
- Wang, R.; Wu, L.; Wang, C. Typhoon track changes associated with global warming. J. Clim. 2011, 24, 3748–3752. [Google Scholar] [CrossRef] [Green Version]
- Yokoi, S.; Takayabu, Y.N.; Murakami, H. Attribution of projected future changes in tropical cyclone passage frequency over the western North Pacific. J. Clim. 2013, 26, 4096–4111. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Villarini, G.; Murakami, H.; Gudgel, R.; Yang, X. Statistical–dynamical seasonal forecast of western North Pacific and East Asia landfalling tropical cyclones using the GFDL FLOR coupled climate model. J. Clim. 2017, 30, 2209–2232. [Google Scholar] [CrossRef]
- Zhang, W.-Q.; Wu, L.-G.; Zou, X.-K. Changes of tropical cyclone tracks in the western North Pacific over 1979–2016. Adv. Clim. Change Res. 2018, 9, 170–176. [Google Scholar] [CrossRef]
- Chan, J.C.L. The physics of tropical cyclone motion. Annu. Rev. Fluid Mech. 2005, 37, 99–128. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wahiduzzaman, M.; Yeasmin, A. A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere 2022, 13, 1128. https://doi.org/10.3390/atmos13071128
Wang X, Wahiduzzaman M, Yeasmin A. A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere. 2022; 13(7):1128. https://doi.org/10.3390/atmos13071128
Chicago/Turabian StyleWang, Xiang, Md Wahiduzzaman, and Alea Yeasmin. 2022. "A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities" Atmosphere 13, no. 7: 1128. https://doi.org/10.3390/atmos13071128
APA StyleWang, X., Wahiduzzaman, M., & Yeasmin, A. (2022). A Kernel Density Estimation Approach and Statistical Generalized Additive Model of Western North Pacific Typhoon Activities. Atmosphere, 13(7), 1128. https://doi.org/10.3390/atmos13071128