Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Chemicals
2.2. Synthesis of Micropores Biochar
2.3. Characterization
2.4. CO2 Adsorption Performance Evaluation
3. Biochar Characterization
4. CO2 Adsorption Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunathilake, C.A.; Ranathunge, G.; Dassanayake, R.S.; Illesinghe, S.D.; Manchanda, A.S.; Kalpage, C.S.; Rajapakse, R.M.G.; Karunaratne, D. Emerging investigator series: Synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures. Environ. Sci. Nano 2020, 7, 1225–1239. [Google Scholar] [CrossRef]
- Damartzis, T.; Papadopoulos, A.I.; Seferlis, P. Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants. J. Clean. Prod. 2016, 111, 204–216. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, W.L.; Song, M.J.; Wang, F.L.; Hu, X.D.; Guo, Q.J.; Liu, Y.Z. Polyetheramine improves the CO2 adsorption behavior of tetraethylenepentamine-functionalized sorbents. Chem. Eng. J. 2019, 364, 475–484. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Q.J.; Kong, T.T. Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture. Chem. Eng. J. 2015, 273, 472–480. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, X.; Guo, T.; Hao, J.; Si, C.; Guo, Q. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons. Front. Chem. Sci. Eng. 2021, 15, 493–504. [Google Scholar] [CrossRef]
- Wang, Y.X.; Hu, X.D.; Guo, T.; Tian, W.G.; Hao, J.; Guo, Q.J. The competitive adsorption mechanism of CO2, H2O and O2 on a solid amine adsorbent. Chem. Eng. J. 2021, 416, 129007. [Google Scholar] [CrossRef]
- Rehman, A.; Heo, Y.-J.; Nazir, G.; Park, S.-J. Solvent-free, one-pot synthesis of nitrogen-tailored alkali-activated microporous carbons with an efficient CO2 adsorption. Carbon 2021, 172, 71–82. [Google Scholar] [CrossRef]
- Othman, F.E.C.; Yusof, N.; Samitsu, S.; Abdullah, N.; Hamid, M.F.; Nagai, K.; Abidin, M.N.Z.; Azali, M.A.; Ismail, A.F.; Jaafar, J.; et al. Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. J. CO2 Util. 2021, 45, 101434. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-R.; Ma, Y.; McCarthy, M.C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P.B.; Zhou, H.-C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev. 2011, 255, 1791–1823. [Google Scholar] [CrossRef]
- Feng, D.; Guo, D.; Zhang, Y.; Sun, S.; Zhao, Y.; Chang, G.; Guo, Q.; Qin, Y. Adsorption-enrichment characterization of CO2 and dynamic retention of free NH3 in functionalized biochar with H2O/NH3 center dot H2O activation for promotion of new ammonia-based carbon capture. Chem. Eng. J. 2021, 409, 128193. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Hu, G.; Hu, X.; Li, Z.; Shen, S.; Radosz, M.; Fan, M. Enhanced CO2 Capture Capacity of Nitrogen-Doped Biomass-Derived Porous Carbons. ACS Sustain. Chem. Eng. 2016, 4, 1439–1445. [Google Scholar] [CrossRef]
- Tian, W.; Wang, Y.; Hao, J.; Guo, T.; Wang, X.; Xiang, X.; Guo, Q. Amine-Modified Biochar for the Efficient Adsorption of Carbon Dioxide in Flue Gas. Atmosphere 2022, 13, 579. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Zhang, Y.; Liu, S.; Wang, C.; Chen, W.; Liu, C.; Chen, Z.; Zhang, Y. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresour. Technol. 2020, 297, 122381. [Google Scholar] [CrossRef]
- Perondi, D.; Bassanesi, G.R.; Manera, C.; Lazzari, L.K.; Godinho, M.; Zattera, A.J.; Dotto, G.L. From cellulose to graphene-like porous carbon nanosheets. Microporous Mesoporous Mater. 2021, 323, 111217. [Google Scholar] [CrossRef]
- Gao, C.; Vo, C.D.; Jin, Y.Z.; Li, W.W.; Armes, S.P. Multihydroxy polymer-functionalized carbon nanotubes: Synthesis, derivatization, and metal loading. Macromolecules 2005, 38, 8634–8648. [Google Scholar] [CrossRef]
- Nowrouzi, M.; Younesi, H.; Bahramifar, N. Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel 2018, 223, 99–114. [Google Scholar] [CrossRef]
- Theydan, S.K.; Ahmed, M.J. Adsorption of methylene blue onto biomass-based activated carbon by FeCl3 activation: Equilibrium, kinetics, and thermodynamic studies. J. Anal. Appl. Pyrolysis 2012, 97, 116–122. [Google Scholar] [CrossRef]
- Albatrni, H.; Qiblawey, H.; Al-Marri, M.J. Walnut shell based adsorbents: A review study on preparation, mechanism, and application. J. Water Process Eng. 2022, 45, 102527. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Amarowicz, R. Walnut (Juglans regia L.) shell pyroligneous acid: Chemical constituents and functional applications. RSC Adv. 2018, 8, 22376–22391. [Google Scholar] [CrossRef] [Green Version]
- Morales, L.F.; Herrera, K.; Lopez, J.E.; Saldarriaga, J.F. Use of biochar from rice husk pyrolysis: Assessment of reactivity in lime pastes. Heliyon 2021, 7, e08423. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferro, A.; Rovere, M.; Padovano, E.; Bartoli, M.; Giorcelli, M. Introducing the Novel Mixed Gaussian-Lorentzian Lineshape in the Analysis of the Raman Signal of Biochar. Nanomaterials 2020, 10, 1748. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, J.; Ling, P.; Zhang, X.; Xu, K.; He, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman spectroscopy of biochar from the pyrolysis of three typical Chinese biomasses: A novel method for rapidly evaluating the biochar property. Energy 2020, 202, 117644. [Google Scholar] [CrossRef]
- Chia, C.H.; Gong, B.; Joseph, S.D.; Marjo, C.E.; Munroe, P.; Rich, A.M. Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX. Vib. Spectrosc. 2012, 62, 248–257. [Google Scholar] [CrossRef]
- De Sousa, D.V.; Guimaraes, L.M.; Felix, J.F.; Ker, J.C.; Schaefer, C.E.R.G.; Rodet, M.J. Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PLoS ONE 2020, 15, e0229447. [Google Scholar] [CrossRef]
- Srinivas, G.; Krungleviciute, V.; Guo, Z.-X.; Yildirim, T. Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume. Energy Environ. Sci. 2014, 7, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Yadav, T.K.; Abhishek; Prasad, B.; Singh, D.; Prasad, K.S. Calcium Pretreated Pinus Roxburghii Wood Biochar for Adsorptive Removal of Fluoride from Aqueous Solution. Biointerface Res. Appl. Chem. 2022, 12, 4307–4316. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ. Sci. Pollut. Res. 2018, 25, 11875–11883. [Google Scholar] [CrossRef]
- Rasa, K.; Vihera-Aarnio, A.; Rytkonen, P.; Hyvaluoma, J.; Kaseva, J.; Suhonen, H.; Jyske, T. Quantitative analysis of feedstock structural properties can help to produce willow biochar with homogenous pore system. Ind. Crops Prod. 2021, 166, 113475. [Google Scholar] [CrossRef]
- Schnee, L.S.; Knauth, S.; Hapca, S.; Otten, W.; Eickhorst, T. Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat. Plant Soil 2016, 408, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Deng, S.B.; Wei, H.R.; Chen, T.; Wang, B.; Huang, J.; Yu, G. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 2014, 253, 46–54. [Google Scholar] [CrossRef]
- Sevilla, M.; Fuertes, A.B. Sustainable porous carbons with a superior performance for CO2 capture. Energy Environ. Sci. 2011, 4, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Wickramaratne, N.P.; Jaroniec, M. Activated Carbon Spheres for CO2 Adsorption. ACS Appl. Mater. Interfaces 2013, 5, 1849–1855. [Google Scholar] [CrossRef]
- Dassanayake, R.S.; Gunathilake, C.; Abidi, N.; Jaroniec, M. Activated carbon derived from chitin aerogels: Preparation and CO2 adsorption. Cellulose 2018, 25, 1911–1920. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Choi, S.W.; Dissanayake, P.D.; Shang, J.; Wang, C.-H.; Yang, X.; Kim, S.; Tsang, D.C.W.; Lee, K.B.; Ok, Y.S. Gasification biochar from biowaste (food waste and wood waste) for effective CO2 adsorption. J. Hazard. Mater. 2020, 391, 121147. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fan, Z.; Guo, T.; Xu, J.; Han, Z.; Pan, Y.; Xiao, H.; Sun, Y.; Yan, Q. Characteristics of as-prepared biochar derived from catalytic pyrolysis within moderate-temperature ionic liquid for CO2 uptake. Can. J. Chem. Eng. 2020, 98, 690–704. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Sun, M.; Li, W.; Hu, X. Adsorption of CO2 by nitrogen doped corn straw based biochar. Arab. J. Geosci. 2021, 14, 1875. [Google Scholar] [CrossRef]
- Zubbri, N.A.; Mohamed, A.R.; Kamiuchi, N.; Mohammadi, M. Enhancement of CO2 adsorption on biochar sorbent modified by metal incorporation. Environ. Sci. Pollut. Res. 2020, 27, 11809–11829. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Chiueh, P.-T.; Lo, S.-L. CO2 adsorption on biochar from co-torrefaction of sewage sludge and leucaena wood using microwave heating. Energy Procedia 2019, 158, 4435–4440. [Google Scholar] [CrossRef]
- Presser, V.; McDonough, J.; Yeon, S.H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 2011, 4, 3059–3066. [Google Scholar] [CrossRef]
- Wei, H.R.; Deng, S.B.; Hu, B.Y.; Chen, Z.H.; Wang, B.; Huang, J.; Yu, G. Granular Bamboo-Derived Activated Carbon for High CO2 Adsorption: The Dominant Role of Narrow Micropores. Chemsuschem 2012, 5, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhou, J.; Xing, W.; Xue, Q.; Yan, Z.; Zhuo, S.; Qiao, S.Z. Critical role of small micropores in high CO2 uptake. Phys. Chem. Chem. Phys. 2013, 15, 2523–2529. [Google Scholar] [CrossRef] [PubMed]
- Vishnyakov, A.; Ravikovitch, P.I.; Neimark, A.V. Molecular level models for CO2 sorption in nanopores. Langmuir 1999, 15, 8736–8742. [Google Scholar] [CrossRef]
- Vishnyakov, A.; Piotrovskaya, E.M.; Brodskaya, E.N. Monte Carlo Computer Simulation of Adsorption of Diatomic Fluids in Slitlike Pores. Langmuir 1996, 12, 3643–3649. [Google Scholar] [CrossRef]
Samples | Industrial Analysis (wt %, ad) | Elemental Analysis (wt %, ad) | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | O a | |
walnut shells | 6.21 | 1.86 | 81.23 | 10.69 | 49.94 | 5.86 | 0.26 | 0.04 | 43.96 |
Samples | SBET/(m2 g−1) a | VTotal(cm3 g−1) b | Smic/(m2g−1) c | Vmic(cm3 g−1) d | CO2 Capacities at 273 K (mmol g−1) | CO2 Capacities at 298 K (mmol g−1) |
---|---|---|---|---|---|---|
Raw materials | 667.4 | 0.33 | - | - | - | - |
WS-5-1-3 | 1370.4 | 0.63 | 1307.7 | 0.54 | 4.17 | 2.81 |
WS-5-1.5-1.5 | 1267.5 | 0.54 | 1235.0 | 0.49 | 4.42 | 3.20 |
WS-5-3-1 | 1111.4 | 0.49 | 1073.2 | 0.43 | 4.61 | 3.02 |
WS-5-3-0 | 836.6 | 0.43 | 762.7 | 0.31 | 4.07 | 2.95 |
WS-5-0-3 | 960.9 | 0.45 | 909.7 | 0.37 | 4.24 | 2.81 |
WS-5-1-3-0.1 | 1693.7 | 0.94 | 1500.3 | 0.64 | 3.85 | 2.40 |
WS-5-1.5-1.5-0.1 | 2584.9 | 1.28 | 2434.5 | 1.01 | 4.56 | 2.72 |
WS-5-3-1-0.1 | 1548.5 | 0.85 | 1368.7 | 0.58 | 4.44 | 2.77 |
WS-5-3-0-0.1 | 1388.4 | 0.64 | 1315.6 | 0.53 | 4.72 | 2.63 |
WS-5-0-3-0.1 | 1793.7 | 1.03 | 1566.2 | 0.67 | 4.27 | 2.76 |
WS-5-3-1-0.15 | 2074.6 | 1.17 | 1307.7 | 0.54 | 4.12 | 2.59 |
WS-5-3-1-0.2 | 1683.1 | 0.87 | 1235.0 | 0.49 | 4.20 | 2.41 |
WS-5-3-1-0.25 | 2316.8 | 1.46 | 1073.2 | 0.43 | 4.79 | 2.58 |
WS-5-1.5-1.5-0.15 | 2647.8 | 1.32 | 2008.7 | 0.54 | 4.57 | 2.89 |
WS-5-1.5.-1.5-0.2 | 2261.5 | 2.58 | 1581.7 | 0.40 | 4.26 | 2.71 |
WS-5-1.5-1.5-0.25 | 1862.9 | 1.13 | 1588.6 | 0.69 | 3.03 | 2.44 |
Adsorbents | Activating Agents | CO2 Capacities at 273 K (mmol g−1) | CO2 Capacities at 298 K (mmol g−1) | Reference |
---|---|---|---|---|
WS-5-3-1-0.25 | ZnCl2, FeCl3, H2O | 4.79 | 2.58 | This work |
WS-5-1.5-1.5 | ZnCl2, FeCl3 | 4.42 | 3.20 | This work |
WFW40-K | KOH, CO2 | – | 3.23 | [35] |
CCAc | KOH | 4.5 | – | [36] |
Urea/PC | Urea | 7.03 | 4.97 | [37] |
Rambutan peel | Mg(NO3)2, MgCl2 | – | 1.75 | [38] |
Pure leucaena | – | – | 1.20 | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, T.; Tian, W.; Wang, Y. Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar. Atmosphere 2022, 13, 1110. https://doi.org/10.3390/atmos13071110
Guo T, Tian W, Wang Y. Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar. Atmosphere. 2022; 13(7):1110. https://doi.org/10.3390/atmos13071110
Chicago/Turabian StyleGuo, Tuo, Wengang Tian, and Yanxia Wang. 2022. "Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar" Atmosphere 13, no. 7: 1110. https://doi.org/10.3390/atmos13071110
APA StyleGuo, T., Tian, W., & Wang, Y. (2022). Effect of Pore Structure on CO2 Adsorption Performance for ZnCl2/FeCl3/H2O(g) Co-Activated Walnut Shell-Based Biochar. Atmosphere, 13(7), 1110. https://doi.org/10.3390/atmos13071110