Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050
Abstract
:1. Introduction
2. Methods
2.1. Model Application
2.2. Preprocessing of LUH2 Data
2.3. Configurations of Parameters
2.4. Model Performance
3. Results and Discussions
3.1. Land-Use Changes of China from 2015 to 2050 under SSP Scenarios
3.2. Changes in BVOC Emissions Driven by Land-Use Changes
3.3. Changes in O3 and PM Concentrations in Response to Land-Use Changes
3.4. Projections under Carbon-Neutral Scenario of China
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Jiang, F.; Zhao, J.; Zhu, G.; He, X.; Ma, X.; Li, S.; Sabel, C.E.; Wang, H. Impacts of O3 on premature mortality and crop yield loss across China. Atmos. Environ. 2018, 194, 41–47. [Google Scholar] [CrossRef]
- Ding, D.; Xing, J.; Wang, S.; Liu, K.; Hao, J. Estimated contributions of emissions controls, meteorological factors, population growth, and changes in baseline mortality to reductions in ambient PM2.5 and PM2.5-related mortality in China, 2013–2017. Environ. Health Perspect. 2019, 127, 067009. [Google Scholar] [CrossRef]
- Liu, S.; Xing, J.; Zhang, H.; Ding, D.; Zhang, F.; Zhao, B.; Sahu, S.K.; Wang, S. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. Atmos. Environ. 2019, 218, 117020. [Google Scholar] [CrossRef]
- Thunis, P.; Cuvelier, C. Impact of biogenic emissions on ozone formation in the Mediterranean area—A BEMA modelling study. Atmos. Environ. 2000, 34, 467–481. [Google Scholar] [CrossRef]
- Ma, M.; Gao, Y.; Wang, Y.; Zhang, S.; Leung, L.R.; Liu, C.; Wang, S.; Zhao, B.; Chang, X.; Su, H.; et al. Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmos. Chem. Phys. Discuss. 2019, 2019, 12195–12207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, Y. Climate-driven ground-level ozone extreme in the fall over the Southeast United States. Proc. Natl. Acad. Sci. USA 2016, 113, 10025–10030. [Google Scholar] [CrossRef] [Green Version]
- Carlton, A.; Wiedinmyer, C.; Kroll, J. A review of Secondary Organic Aerosol (SOA) formation from isoprene. Atmos. Chem. Phys. Discuss. 2009, 9, 4987–5005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hu, X.M.; Leung, L.R.; Gustafson, W.I. Impacts of regional climate change on biogenic emissions and air quality. J. Geophys. Res. Atmos. 2008, 113, D18310. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.; Eo, Y.; Jang, M.; Woo, J.H.; Lim, J.H. Impact of Land Cover and Leaf Area Index on BVOC Emissions over the Korean Peninsula. Atmosphere 2020, 11, 806. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Guenther, A.B.; Yang, X.; Cheng, H. A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: The roles of land cover change and climate variability. Atmos. Chem. Phys. 2021, 21, 4825–4848. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.S.; Huang, K.; Tong, D.; Zhuang, G. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia. Atmos. Chem. Phys. 2016, 16, 8157–8180. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Xing, J.; Sahu, S.K.; Liu, X.; Liu, S.; Jiang, Y.; Zhang, H.; Li, S.; Ding, D.; Chang, X. Wind-blown dust and its impacts on particulate matter pollution in Northern China: Current and future scenarios. Environ. Res. Lett. 2021, 16, 114041. [Google Scholar] [CrossRef]
- Jiang, X.; Wiedinmyer, C.; Chen, F.; Yang, Z.-L.; Chun-Fung, J. Predicted impacts of climate and land use change on surface ozone in the Houston, Texas, area. J. Geophys. Res. Atmos. 2008, 113, D20. [Google Scholar] [CrossRef]
- Feng, C.; Li, R. Spatiotemporal variation analysis of air pollution from 2013 to 2019 in Beijing based on land use regression model. Huanjing Kexue Xuebao Acta Sci. Circumstantiae 2021, 41, 1231–1238. [Google Scholar] [CrossRef]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117. [Google Scholar] [CrossRef] [Green Version]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Chang. Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Tabeau, A.; Hatna, E. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: A study for land use in Europe. J. Environ. Manag. 2013, 127, S132–S144. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Xu, X.; Chen, G.; Li, X. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci. Bull. 2020, 65, 1935–1947. [Google Scholar] [CrossRef]
- Xinhua. Xi Jinping Delivers an Important Speech at the General Debate of the 75th General Assembly of the United Nations. Available online: http://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527647.htm (accessed on 20 May 2022).
- Byun, D.W.; Pleim, J.E.; Tang, R.T.; Bourgeois, A. Meteorology-Chemistry Interface Processor (MCIP) for Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1999. [Google Scholar]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.W.; Ching, J. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) MODELING System; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1999. [Google Scholar]
- Jiang, X.; Guenther, A.; Potosnak, M.; Geron, C.; Seco, R.; Karl, T.; Kim, S.; Gu, L.; Pallardy, S. Isoprene Emission Response to Drought and the Impact on Global Atmospheric Chemistry. Atmos. Environ. 2018, 183, 69–83. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Yang, Y.; Du, Q.; Shen, Y.; Lin, S.; Gu, D.; Su, W.; Liu, C. Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geosci. Model Dev. 2021, 14, 6155–6175. [Google Scholar] [CrossRef]
- Liu, S.; Xing, J.; Wang, S.; Ding, D.; Hao, J. Health Benefits of Emission Reduction under 1.5 °C Pathways Far Outweigh Climate-Related Variations in China. Environ. Sci. Technol. 2021, 55, 10957–10966. [Google Scholar] [CrossRef]
- Hu, J.; Wang, P.; Ying, Q.; Zhang, H.; Chen, J.; Ge, X.; Li, X.; Jiang, J.; Wang, S.; Zhang, J. Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmos. Chem. Phys. 2017, 17, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Zhao, B.; Wang, S.; Wang, T.; Ding, D.; Chang, X.; Liu, K.; Xing, J.; Dong, Z.; Aunan, K. Transition in source contributions of PM2.5 exposure and associated premature mortality in China during 2005–2015. Environ. Int. 2019, 132, 105111. [Google Scholar] [CrossRef]
- Zhao, B.; Zheng, H.; Wang, S.; Smith, K.R.; Lu, X.; Aunan, K.; Gu, Y.; Wang, Y.; Ding, D.; Xing, J. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl. Acad. Sci. USA 2018, 115, 12401–12406. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 2015, 15, 10529–10566. [Google Scholar] [CrossRef] [Green Version]
- Gower, S.T.; Kucharik, C.J.; Norman, J.M. Direct and Indirect Estimation of Leaf Area Index, fAPAR, and Net Primary Production of Terrestrial Ecosystems. Remote Sens. Environ. 1999, 70, 29–51. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.; Wang, J.; Fu, J.S.; Liu, T.; Xu, J.; Fu, X.; Hao, J. Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmos. Environ. 2013, 77, 453–463. [Google Scholar] [CrossRef]
- Streets, D.G.; Fu, J.S.; Jang, C.J.; Hao, J.; He, K.; Tang, X.; Zhang, Y.; Wang, Z.; Li, Z.; Zhang, Q.; et al. Air quality during the 2008 Beijing Olympic Games. Atmos. Environ. 2007, 41, 480–492. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Yang, J.; Zhao, X.; Wei, W.; Cheng, D.; Pan, X.; Su, J. Understanding haze pollution over the southern Hebei area of China using the CMAQ model. Atmos. Environ. 2012, 56, 69–79. [Google Scholar] [CrossRef]
- Liu, S.; Xing, J.; Westervelt, D.M.; Liu, S.; Ding, D.; Fiore, A.M.; Kinney, P.L.; Zhang, Y.; He, M.Z.; Zhang, H. Role of emission controls in reducing the 2050 climate change penalty for PM2. 5 in China. Sci. Total Environ. 2020, 765, 144338. [Google Scholar] [CrossRef]
- Emery, C.; Tai, E.; Yarwood, G. Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes; Environ, International Corporation: Novato, CA, USA, 2001. [Google Scholar]
Variable | Coefficient | |
---|---|---|
LAI | 1.291 | |
EF | ISOP (isoprene) | 1.408 |
MYRC (myrcene) | 1.493 | |
SABI (sabinene) | 1.486 | |
LIMO (limonene) | 1.490 | |
A_3CAR (3-carene) | 1.494 | |
OCIM (t-β-ocimene) | 1.477 | |
BPIN (β-pinene) | 1.488 | |
APIN (α-pinene) | 1.494 | |
MBO (232-MBO) | 1.500 |
Group | Meteorological Data | Land-Use Data | Case Name |
---|---|---|---|
base | 2015 | 2015 | base |
SSP126 | SSP126 | 2015 | ssp126 |
SSP126 | SSP126 grid | ssp126g | |
SSP585 | SSP585 | 2015 | ssp585 |
SSP585 | SSP585 grid | ssp585g | |
carbon | SSP126 | Carbon ratio | carbon |
Region | SSP126 | SSP585 |
---|---|---|
JJJ | −71.4 | −0.1 |
YRD | 4.0 | −24.3 |
PRD | 32.9 | −26.4 |
SCH | 2.8 | −37.1 |
HUZ | 36.3 | −27.2 |
ECH | 321.4 | 76.2 |
CHA | 2389.7 | 84.3 |
Region | Variable | SSP126 | SSP585 |
---|---|---|---|
CHA | O3 (ppbv) | 2.93 | 2.92 |
O3MAX (ppbv) | 1.42 | 1.43 | |
PM2.5 (μg m−3) | 2.18 | 1.14 | |
PM10 (μg m−3) | 2.22 | 1.11 |
Region | JJJ | YRD | PRD | SCH | HUZ | ECH | CHA |
---|---|---|---|---|---|---|---|
Changes (Unit: GgC) | 239.9 | 122.4 | 178.7 | 417.3 | 269.7 | 4857.4 | 7061.0 |
Variables | JJJ | YRD | PRD | SCH | HUZ | ECH | CHA | |
---|---|---|---|---|---|---|---|---|
Annual | O3 | 0.42 | 0.35 | 0.34 | 0.32 | 0.53 | 0.22 | 0.06 |
O3MAX | 0.70 | 0.69 | 0.60 | 0.68 | 0.32 | 0.79 | 0.70 | |
PM2.5 | 0.22 | 0.27 | 0.53 | 0.27 | 0.61 | 0.26 | 0.16 | |
PM10 | 0.38 | 0.44 | 0.77 | 0.57 | 0.92 | 0.43 | 0.28 | |
Summer | O3 | 1.09 | 0.82 | 0.66 | 0.73 | 1.06 | 0.54 | 0.24 |
O3MAX | 1.81 | 1.81 | 1.26 | 1.64 | 0.62 | 1.88 | 1.88 | |
PM2.5 | 0.70 | 0.72 | 0.67 | 0.83 | 1.26 | 0.56 | 0.35 | |
PM10 | 0.87 | 0.93 | 0.89 | 1.21 | 1.58 | 0.74 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Sahu, S.K.; Zhang, S.; Liu, S.; Sun, Y.; Liu, X.; Xing, J.; Zhao, B.; Zhang, H.; Wang, S. Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050. Atmosphere 2022, 13, 1086. https://doi.org/10.3390/atmos13071086
Liu S, Sahu SK, Zhang S, Liu S, Sun Y, Liu X, Xing J, Zhao B, Zhang H, Wang S. Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050. Atmosphere. 2022; 13(7):1086. https://doi.org/10.3390/atmos13071086
Chicago/Turabian StyleLiu, Song, Shovan Kumar Sahu, Shuping Zhang, Shuchang Liu, Yisheng Sun, Xiliang Liu, Jia Xing, Bin Zhao, Hongliang Zhang, and Shuxiao Wang. 2022. "Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050" Atmosphere 13, no. 7: 1086. https://doi.org/10.3390/atmos13071086
APA StyleLiu, S., Sahu, S. K., Zhang, S., Liu, S., Sun, Y., Liu, X., Xing, J., Zhao, B., Zhang, H., & Wang, S. (2022). Impact of Climate-Driven Land-Use Change on O3 and PM Pollution by Driving BVOC Emissions in China in 2050. Atmosphere, 13(7), 1086. https://doi.org/10.3390/atmos13071086