Effects of Winter Heating on Urban Black Carbon: Characteristics, Sources and Its Correlation with Meteorological Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Black Carbon Aerosol Measurements
2.3. Air Mass Backward Trajectories
3. Results and Discussion
3.1. Black Carbon (BC) Characteristics in Heating and Non-Heating Seasons
3.2. Diurnal Variations
3.3. Explanation of BC Sources
3.4. Correlation between BC and Common Pollutants in the Atmosphere
3.5. Analysis of the Correlation between BC and Meteorological Conditions
3.6. Back-Trajectory Cluster Analyses and Concentration Weighted Trajectory (CWT)
4. Conclusions
- (1)
- The average BC concentrations during the heating season were 1.32 times higher than those during the non-heating season in Zhengzhou. This result indicated that centralized urban heating in winter increased the BC concentration. Therefore, it is recommended to optimize the energy structure and promote clean transformation for winter heating to decrease urban BC concentration. Moreover, the daily variation in BC concentration during the heating season was bimodal, and that for the non-heating season was unimodal.
- (2)
- The α-values of the heating season ranged from 1.09 to 1.94, with an average value of 1.50 ± 0.13, and those in the non-heating season ranged from 1.05 to 1.93, with a mean value of 1.31 ± 0.19. This study focused on the comparison of α-values between the heating and non-heating seasons. The result indicated that biomass and coal combustion contributed more to the atmospheric BC in the heating season, while vehicle emissions contributed more in the non-heating season.
- (3)
- BC concentrations were positively correlated with PM2.5, PM10, CO, and NO in both the heating and non-heating seasons, while the correlation between BC and SO2 was poor. A more comprehensive analysis of correlations between BC and various contaminants in this paper provided a theoretical basis for the joint control of atmospheric contaminants. Moreover, wind speed presented a strong negative correlation with BC, while relative humidity showed a strong positive correlation. Rainfall, barometric pressure, and air temperature showed weak correlations with BC. The correlation between BC and meteorological factors reflected the influencing factors and served as a base for BC concentration prediction.
- (4)
- The distribution of the potential source area in the heating season was mainly distributed in the north-western region of China and the eastern region of Henan Province. In the non-heating season, it was mainly distributed in the north-eastern region of China and the southern region of Henan Province.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Laskin, A.; Laskin, J.; Nizkorodov, S.A. Chemistry of atmospheric brown carbon. Chem. Rev. 2015, 115, 4335–4382. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, C.; Zheng, M. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 2018, 618, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Bond, T.C.; Zarzycki, C.; Flanner, M.G.; Koch, D.M. Quantifying immediate radiative forcing by black carbon and organic matter with the specific forcing pulse. Atmos. Chem. Phys. 2011, 11, 1505–1525. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Wang, W.; Liu, J.; Shen, H.; Shen, G.; Wang, B.; Liu, X.; Li, W.; Huang, Y.; et al. Black carbon emissions in China from 1949 to 2050. Environ. Sci. Technol. 2012, 46, 7595–7603. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Gupta, S.; Waldhoff, S.T.; Wang, M.; Bond, T.C.; Yiyun, B. Black carbon emissions in China. Atmos. Environ. 2001, 35, 4281–4296. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, Z.; Xu, Y.; Wang, C.; Gu, Y.; Xu, H.; Streets, D.G. Black carbon emissions from biomass and coal in rural China. Atmos. Environ. 2018, 176, 158–170. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V.; Carmichael, G.; Kulkarni, S.; Tang, Y.; Adhikary, B.; Leung, L.R.; Qian, Y. Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos. Chem. Phys. 2010, 10, 6007–6024. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5065–5911. [Google Scholar] [CrossRef]
- Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ. Health Perspect. 2004, 112, 970–978. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Pakkanen, T.A.; Kerminen, V.M.; Ojanen, C.H.; Hillamo, R.E.; Aarnio, P.; Koskentalo, T. Atmospheric black carbon in Helsinki. Atmos. Environ. 2000, 34, 1497–1506. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Zhang, Y.; Xu, Y.; Liu, X.; Ding, P.; Shen, C.; Chen, Y.; Tian, C.; Zhang, G. The use of levoglucosan and radio carbon for source apportionment of PM2.5 carbonaceous aerosols at a background site in east China. Environ. Sci. Technol. 2013, 47, 10454–10461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Huang, R.J.; El Haddad, I.; Ho, K.F.; Cao, J.J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K.R.; Canonaco, F.; et al. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013. Atmos. Chem. Phys. 2015, 15, 1299–1312. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Bosch, C.; Kang, S.; Andersson, A.; Chen, P.; Zhang, Q.; Cong, Z.; Chen, B.; Qin, D.; Gustafsson, Ö. Sources of black carbon to the Himalayan–Tibetan Plateau glaciers. Nat. Commun. 2016, 7, 12574. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Ding, A. Dome effect of black carbon and its key influencing factors: A one-dimensional modelling study. Atmos. Chem. Phys. 2018, 18, 2821–2834. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shen, Z.; Zhang, T.; Kong, S.; Lei, Y.; Wang, Q.; Tao, J.; Zhang, R.; Wei, P.; Wei, C.; et al. Spatial distribution and sources of winter black carbon and brown carbon in six Chinese megacities. Sci. Total Environ. 2021, 762, 143075. [Google Scholar] [CrossRef]
- Ni, H.; Huang, R.J.; Cosijn, M.M.; Yang, L.; Guo, J.; Cao, J.; Dusek, U. Measurement report: Dual-carbon isotopic characterization of carbonaceous aerosol reveals different primary and secondary sources in Beijing and Xi’an during severe haze events. Atmos. Chem. Phys. 2020, 20, 16041–16053. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H. Haze days in north China and the associated atmospheric circulations based on daily visibility data from 1960 to 2012. J. Geophys. Res. Atmos. 2015, 120, 5895–5909. [Google Scholar] [CrossRef]
- Shen, F.; Ge, X.; Hu, J.; Nie, D.; Tian, L.; Chen, M. Air pollution characteristics and health risks in Henan Province, China. Environ. Res. 2017, 156, 625–634. [Google Scholar] [CrossRef]
- Drinovec, L.; Mocnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. Discuss. 2014, 7, 10179–10220. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Tiwari, S.; Hopke, P.K.; Zhou, C.; Turner, J.R.; Panicker, A.S.; Singh, P.K. Ambient black carbon particulate matter in the coal region of Dhanbad, India. Sci. Total Environ. 2018, 615, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Saarikoski, S.; Niemi, J.V.; Aurela, M.; Pirjola, L.; Kousa, A.; Rönkkö, T.; Timonen, H. Sources of black carbon at residential and traffic environments obtained by two source apportionment methods. Atmos. Chem. Phys. 2021, 21, 14851–14869. [Google Scholar] [CrossRef]
- Wang, J.; Nie, W.; Cheng, Y.; Shen, Y.; Chi, X.; Wang, J.; Huang, X.; Xie, Y.; Sun, P.; Xu, Z.; et al. Light absorption of brown carbon in eastern China based on 3-year multi-wavelength aerosol optical property observations and an improved absorption Ångström exponent segregation method. Atmos. Chem. Phys. 2018, 18, 9061–9074. [Google Scholar] [CrossRef] [Green Version]
- Sandradewi, J.; Prévt, A.S.H.; Alfarra, M.R.; Szidat, S.; Wehrli, M.N.; Ruff, M.; Weimer, S.; Lanzi, V.N.; Weingartner, E.; Perron, N.; et al. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass. Atmos. Chem. Phys. 2008, 8, 8091–8118. [Google Scholar] [CrossRef] [Green Version]
- Prasad, P.; Raman, M.R.; Ratnam, M.; Chen, W.N.; Rao, S.V.B.; Gogoi, M.M.; Kompalli, S.K.; Sarat Kumar, K.; Babu, S.S. Characterization of atmospheric black carbon over a semi-urban site of southeast India: Local sources and long-range transport. Atmos. Res. 2018, 213, 411–421. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Draxler, R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Baltensperger, U.; Gäggeler, H.W.; Jost, D.T.; Schwikowski, M.; Seibert, P. 14.P.39 Aerosol measurements at high-alpine sites with the epiphaniometer. J. Aerosol Sci. 1994, 25, 185–186. [Google Scholar] [CrossRef]
- Kompalli, S.K.; Babu, S.S.; Moorthy, K.K.; Manoj, M.R.; Kumar, N.V.P.K.; Kannemadugu, H.B.S.; Joshi, A. Aerosol black carbon characteristics over central India: Temporal variation and its dependence on mixed layer height. Atmos. Res. 2014, 147–148, 27–37. [Google Scholar] [CrossRef]
- Hsu, Y.K.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Wang, Y. MeteoInfo: GIS software for meteorological data visualization and analysis. Meteorol. Appl. 2014, 21, 2. [Google Scholar] [CrossRef]
- Ashbaugh, L.; Malm, W.C.; Sadeh, W.Z. A residence time probability analysis of sulfur concentrations at grand Canyon National Park. Atmos. Environ. 1985, 19, 1263–1270. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Z.; Cheng, H.; Lv, X.; Gong, W.; Wang, X.; Zhang, G. Seasonal variations and chemical characteristics of PM2.5 in Wuhan, central China. Sci. Total Environ. 2015, 518–519, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Xue, K.; Li, J.; Wang, J. Characteristics and weekend effect of air pollution in eastern Jilin Province. Atmosphere 2022, 13, 681. [Google Scholar] [CrossRef]
- Day, D.E.; Hand, J.L.; Carrico, C.M.; Engling, G.; Malm, W.C. Humidification factors from laboratory studies of fresh smoke from biomass fuels. Geophys. Res. Atmos. 2006, 111, D22. [Google Scholar] [CrossRef] [Green Version]
- Schnaiter, M.; Horvath, H.; Möhlter, O.; Naumann, K.H.; Saafhoff, H.; Schöck, O.W. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 2003, 34, 1421–1444. [Google Scholar] [CrossRef]
- Schnaiter, M.; Linke, C.; Möhler, O.; Naumann, K.H.; Saathoff, H.; Wagner, R.; Schurath, U.; Wehner, B. Absorption amplification of black carbon internally mixed with secondary organic aerosols. J. Geophys. Res. Atmos. 2005, 110, D19204. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, S.F.; Zheng, H.; Hu, Y.; Zeng, X.; Cheng, Y.; Qi, S.H. Concentrations and sources of black carbon aerosols in rural areas of southern North China Plain. Environ. Sci. 2022, 43, 2363–2372. [Google Scholar] [CrossRef]
- Zhao, P.; Dong, F.; Yang, Y.; He, D.; Zhao, X.; Zhang, W.; Yao, Q.; Liu, H. Characteristics of carbonaceous aerosol in the region of Beijing, Tianjin, and Hebei, China. Atmos. Environ. 2013, 71, 389–398. [Google Scholar] [CrossRef]
- Gonzalez, A.; Millet, D.B.; Yu, X.; Wells, K.C.; Griffis, T.J.; Baier, B.C.; Campbell, P.C.; Choi, Y.; DiGangi, J.P.; Gvakharia, A.; et al. Fossil versus nonfossil CO sources in the US: New airborne constraints from ACT-America and GEM. Geophys. Res. Lett. 2021, 48, e2021GL093361. [Google Scholar] [CrossRef]
- Yin, M.; Guan, H.; Luo, L.; Xiao, H.; Zhang, Z. Using nitrogen and oxygen stable isotopes to analyze the major NOx sources to nitrate of PM2.5 in Lanzhou, northwest China, in winter-spring periods. Atmos. Environ. 2022, 276, 119036. [Google Scholar] [CrossRef]
- Cao, J.J.; Shen, Z.X.; Chow, J.C.; Watson, J.G.; Lee, S.C.; Tie, X.X.; Ho, K.F.; Wang, G.H.; Han, Y.M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities. Air Waste Manag. 2012, 62, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.S.; Dumka, U.C.; Kaskaoutis, D.G.; Pipal, A.S.; Srivastava, A.K.; Soni, V.K.; Attri, S.D.; Sateesh, M.; Tiwari, S. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Sci. Total Environ. 2015, 521–522, 431–445. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Ibrahim, M.; Shahid, I.; Mahmood, A.; Irshad, M.K.; Yamin, M.; Ghazala; Tariq, M.; Shamshiri, R.R. Pollution characteristics of particulate matter (PM2.5 and PM10) and constituent carbonaceous aerosols in a South Asian future megacity. Appl. Sci. 2020, 10, 8864. [Google Scholar] [CrossRef]
- Moreno Ríos, A.L.; Tejeda-Benítez, L.P.; Bustillo-Lecompte, C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2022, 13, 101147. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health. Geophys. Res. Atmos. 2010, 115, 1–24. [Google Scholar] [CrossRef]
- Babu, S.S.; Moorthy, K.K. Aerosol black carbon over a tropical coastal station in India. Geophys. Res. Lett. 2002, 29, 13-1–13-4. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wei, Y.; Liu, X.; Zu, L.; Wang, B.; Wang, S.; Zhang, R.; Zhu, R. Effects of Winter Heating on Urban Black Carbon: Characteristics, Sources and Its Correlation with Meteorological Factors. Atmosphere 2022, 13, 1071. https://doi.org/10.3390/atmos13071071
Liu X, Wei Y, Liu X, Zu L, Wang B, Wang S, Zhang R, Zhu R. Effects of Winter Heating on Urban Black Carbon: Characteristics, Sources and Its Correlation with Meteorological Factors. Atmosphere. 2022; 13(7):1071. https://doi.org/10.3390/atmos13071071
Chicago/Turabian StyleLiu, Xinyu, Yangbing Wei, Xinhui Liu, Lei Zu, Bowen Wang, Shenbo Wang, Ruiqin Zhang, and Rencheng Zhu. 2022. "Effects of Winter Heating on Urban Black Carbon: Characteristics, Sources and Its Correlation with Meteorological Factors" Atmosphere 13, no. 7: 1071. https://doi.org/10.3390/atmos13071071
APA StyleLiu, X., Wei, Y., Liu, X., Zu, L., Wang, B., Wang, S., Zhang, R., & Zhu, R. (2022). Effects of Winter Heating on Urban Black Carbon: Characteristics, Sources and Its Correlation with Meteorological Factors. Atmosphere, 13(7), 1071. https://doi.org/10.3390/atmos13071071