Three-Dimensional Dynamic Variations of Ground/Air Surface Temperatures and Their Correlation with Large-Scale Circulation Indexes in Southwest China (1980–2019)
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data Resources and Quality Control
2.3. Methodology
2.3.1. Data Interpolation
2.3.2. Extraction in Different Elevation Bins
2.3.3. Other Methods
3. Results
3.1. Three-Dimensional Variation of Each Index
3.1.1. Temporal Trend
3.1.2. Periodic Analysis
3.1.3. Spatial Variation
3.1.4. Elevation-Dependent Variation Analysis
3.2. Relationship between Temperature Indexes and Large-Scale Circulation Indexes
4. Discussion
4.1. Comparing Different Climatic Changes of GST, SAT, and SATD with Results from Previous Studies
4.2. Elevation-Dependent Variation of GST, SAT, and SATD
4.3. Potential Linkages between GST, SAT, and SATD with Large-Scale Indexes
4.4. Uncertainties and Limitations
5. Conclusions
- Temporally, the variation of GST-related indexes is consistent with the variation of SAT on annual and seasonal timescales, except for GSTx and SATx in SWC. Most meteorological stations in SWC exhibit significant trends of increase in the annual and seasonal averaged GSTm, GSTn, SATx, SATm, and SATn during 1980–2019. In particular, the warming rate of the annual and seasonal averaged GST and SAT is fastest in spring (except in HDM). The variations of the annual and seasonal GST-, SAT-, and SATD-related indexes in the three subareas are similar to those in SWC. The period of the monthly averaged GST, SAT, and SATD is similar in IMF1–3, but different in IMF 4–6.
- Spatially, on annual and seasonal timescales, the variation rate of GSTm and GSTn is consistent with that of SATm and SATn, whereas the variation rate of GSTx is the opposite to that of SATm in high-elevation regions (mainly northern HDM) in SWC. Furthermore, the center of warming of the annual and seasonal GST-, SAT-, and SATD-related indexes is found in the hot dry valley of the Red River (except for SATDx in winter). The variation rate of the annual averaged GSTx and SATDx is downward with elevation, while that of the annual averaged GST, SAT, and SATD is upward with elevation. The elevation variation gradient of the annual averaged GST and SAT amplifies the annual averaged SATD, particularly in HDM.
- The AMO is the large-scale circulation factor with most influence on the anomaly of the monthly averaged GST- and SAT-related indexes on the timescale of 3.7–3.9 years, with a phase difference of +11–75°, indicating that the AMO lags the anomaly of the monthly GST- and SAT-related indexes by 2–9 months in SWC. Meanwhile, the PDO and the NAO lead the anomaly of the monthly averaged SATD-related indexes by 2–5 years (with phase difference −57° to −167°) on the timescale of 12 years, and the most influential large-scale factor in the three subareas exhibits spatial heterogeneity.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Henderson, M.; Wang, L.; Shen, X.; Zhou, D.; Chen, X. Climatology and trends of air and soil surface temperatures in the temperate steppe region of North China. Int. J. Climatol. 2017, 37, 1199–1209. [Google Scholar] [CrossRef]
- Shi, X.; Chen, J. Trends in the differences between homogenized ground surface temperature and surface air temperature in China during 1961–2016 and its possible causes. Theor. Appl. Climatol. 2021, 144, 41–54. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, N.; Ma, Z.; Huang, Y. Understanding the Soil Temperature Variability at Different Depths: Effects of Surface Air Temperature, Snow Cover, and the Soil Memory. Adv. Atmos. Sci. 2021, 38, 493–503. [Google Scholar] [CrossRef]
- Li, N.; Cuo, L.; Zhang, Y. On the freeze–thaw cycles of shallow soil and connections with environmental factors over the Tibetan Plateau. Clim. Dyn. 2021, 57, 3183–3206. [Google Scholar] [CrossRef]
- Chudinova, S.M.; Frauenfeld, O.W.; Barry, R.G.; Zhang, T.; Sorokovikov, V.A. Relationship between air and soil temperature trends and periodicities in the permafrost regions of Russia. J. Geophys. Res. Earth Surf. 2006, 111, F02008. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Gregorich, E.G.; Gameda, S.; Hopkins, D.W.; Wang, X.L. Observed soil temperature trends associated with climate change in Canada. J. Geophys. Res. Atmos. 2011, 116, D02106. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, L.; Li, R.; Wu, X.; Wu, T.; Xie, C.; Zhu, X.; Su, Y. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma 2019, 337, 893–905. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Han, C.; Yang, Y.; Liu, J.; Liu, Z.; Guo, S.; Song, Y. Soil temperature change and its regional differences under different vegetation regions across China. Int. J. Climatol. 2021, 41, E2310–E2320. [Google Scholar] [CrossRef]
- Wang, X.; Chen, R.; Han, C.; Yang, Y.; Liu, J.; Liu, Z.; Guo, S.; Song, Y. Response of shallow soil temperature to climate change on the Qinghai–Tibetan Plateau. Int. J. Climatol. 2021, 41, 1–16. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, W.; Guo, Z.; Xue, S. Spatial and temporal variations in soil temperatures over the Qinghai–Tibet Plateau from 1980 to 2017 based on reanalysis products. Theor. Appl. Climatol. 2020, 140, 1055–1069. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.; Fu, Z.; Zhang, J. Long-range correlation behaviors for the 0-cm average ground surface temperature and average air temperature over China. Theor. Appl. Climatol. 2015, 119, 25–31. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Marchenko, S.S.; Romanovsky, V.E. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibet Plateau. Geoderma 2018, 312, 74–85. [Google Scholar] [CrossRef]
- Luo, D.; Liu, L.; Jin, H.; Wang, X.; Chen, F. Characteristics of ground surface temperature at Chalaping in the Source Area of the Yellow River, northeastern Tibetan Plateau. Agric. For. Meteorol. 2020, 281, 107819. [Google Scholar] [CrossRef]
- Zhang, W.; Li, S.; Wu, T.; Pang, Q. Changes and spatial patterns of the differences between ground and air temperature over the Qinghai-Xizang Plateau. J. Geogr. Sci. 2007, 17, 20–32. [Google Scholar] [CrossRef]
- Garratt, J.R. The atmospheric boundary layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Hong, J.; Dong, B.; Duan, A.; Bao, Q.; Zhou, L. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim. Dyn. 2012, 39, 1183–1195. [Google Scholar] [CrossRef]
- Xin, G.; Yan-Mei, Z.; Da-Wei, H. Temporal and Spatial Characteristics of Soil-Air Temperature Difference (TsTa) in Southeast Guizhou Last 50 Years. Chin. J. Agrometeorol. 2012, 33, 71. [Google Scholar]
- Yang, Z.; Gao, J.; Zhou, C.; Shi, P.; Zhao, L.; Shen, W.; Ouyang, H. Spatio-temporal changes of NDVI and its relation with climatic variables in the source regions of the Yangtze and Yellow rivers. J. Geogr. Sci. 2011, 21, 979–993. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, W.; Zhang, J.; Nath, D. Relationship between soil temperature in May over Northwest China and the East Asian summer monsoon precipitation. Acta Meteorol. Sin. 2013, 27, 716–724. [Google Scholar] [CrossRef]
- Yao-Ming, L.; Deliang, C.; Qiu-Feng, L. The spatiotemporal characteristics and long-term trends of surface-air temperatures difference in China. Adv. Clim. Chang. Res. 2019, 15, 374. [Google Scholar]
- Li, J.; Thompson, D.W. Widespread changes in surface temperature persistence under climate change. Nature 2021, 599, 425–430. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Wang, K. Contrast patterns and trends of lapse rates calculated from near-surface air and land surface temperatures in China from 1961 to 2014. Sci. Bull. 2020, 65, 1217–1224. [Google Scholar] [CrossRef]
- Wang, J.; Pan, Z.; Han, G.; Cheng, L.; Dong, Z.; Zhang, J.; Pan, Y.; Huang, L.; Zhao, H.; Fan, D. Variation in ground temperature at a depth of 0 cm and the relationship with air temperature in China from 1961 to 2010. Resour. Sci. 2016, 38, 1733–1741. [Google Scholar]
- Zhu, F.; Cuo, L.; Zhang, Y.; Luo, J.-J.; Lettenmaier, D.P.; Lin, Y.; Liu, Z. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983–2013. Clim. Dyn. 2018, 51, 2209–2227. [Google Scholar] [CrossRef]
- Fang, X.; Luo, S.; Lyu, S. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor. Appl. Climatol. 2019, 135, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [CrossRef] [Green Version]
- Palazzi, E.; Mortarini, L.; Terzago, S.; Von Hardenberg, J. Elevation-dependent warming in global climate model simulations at high spatial resolution. Clim. Dyn. 2019, 52, 2685–2702. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Dahal, S.; Shrestha, D.; Guyennon, N.; Romano, E.; Colombo, N.; Salerno, F. Elevation-dependent warming of maximum air temperature in Nepal during 1976–2015. Atmos. Res. 2019, 228, 261–269. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 2014, 43, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wu, Z.; He, H.; Du, H.; Wang, L.; Guo, X.; Zhao, W. Differences of the changes in soil temperature of cold and mid-temperate zones, Northeast China. Theor. Appl. Climatol. 2018, 134, 633–643. [Google Scholar] [CrossRef]
- WANG, X.; WANG, S.; JI, C.; PENG, D.; GUO, Y.; ZHENG, X.; Xinjiang, A.B. Spatial-temporal characteristics and mutation analysis of ground temperature in Xingjiang from 1961 to 2015. J. Arid Land Resour. Environ. 2018, 4, 165–169. [Google Scholar]
- Zhang, Y.; Sherstiukov, A.B.; Qian, B.; Kokelj, S.V.; Lantz, T.C. Impacts of snow on soil temperature observed across the circumpolar north. Environ. Res. Lett. 2018, 13, 044012. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Sherstiukov, A.B.; Fedorov, A.N.; Polyakov, I.V.; Walsh, J.E. An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ. Res. Lett. 2014, 9, 064026. [Google Scholar] [CrossRef]
- Bartlett, M.G.; Chapman, D.S.; Harris, R.N. Snow effect on North American ground temperatures, 1950–2002. J. Geophys. Res. Earth Surf. 2005, 110, F03008. [Google Scholar] [CrossRef] [Green Version]
- Yeşilırmak, E. Soil temperature trends in B üyük M enderes B asin, T urkey. Meteorol. Appl. 2014, 21, 859–866. [Google Scholar] [CrossRef]
- Liu, J.; Pu, Z. Does soil moisture have an influence on near-surface temperature? J. Geophys. Res. Atmos. 2019, 124, 6444–6466. [Google Scholar] [CrossRef] [Green Version]
- Horton, D.E.; Johnson, N.C.; Singh, D.; Swain, D.L.; Rajaratnam, B.; Diffenbaugh, N.S. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 2015, 522, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.M.; Zhang, Y.; Renwick, J.A. Dynamic contribution to hemispheric mean temperature trends. Science 1995, 270, 780–783. [Google Scholar] [CrossRef]
- Tung, K.-K.; Zhou, J. Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl. Acad. Sci. USA 2013, 110, 2058–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latif, M.; Martin, T.; Park, W. Southern Ocean sector centennial climate variability and recent decadal trends. J. Clim. 2013, 26, 7767–7782. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Yan, Z.; Quan, X. Observed and SST-forced multidecadal variability in global land surface air temperature. Clim. Dyn. 2015, 44, 359–369. [Google Scholar] [CrossRef]
- Banholzer, S.; Donner, S. The influence of different El Niño types on global average temperature. Geophys. Res. Lett. 2014, 41, 2093–2099. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Li, C.; Yang, X. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Zhen-Feng, M.; Jia, L.; Shun-Qian, Z.; Wen-Xiu, C.; Shu-Qun, Y. Observed climate changes in southwest China during 1961–2010. Adv. Clim. Chang. Res. 2013, 4, 30–40. [Google Scholar] [CrossRef]
- Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and its response to climatic factors in the Qilian Mountains. CATENA 2022, 208, 105694. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Bao, W.; Shen, D.; Ni, P.; Zhou, J.; Sun, Y. Proposition and certification of moving mean difference method for detecting abrupt change points. J. Geogr. Sci 2018, 73, 2075–2085. [Google Scholar]
- Huang, N.E.; Wu, Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Qian, C.; Wu, Z.; Fu, C.; Wang, D. On changing El Niño: A view from time-varying annual cycle, interannual variability, and mean state. J. Clim. 2011, 24, 6486–6500. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Miao, C.; Duan, Q.; Lei, X.; Li, H. Multiple-wavelet coherence of world’s large rivers with meteorological factors and ocean signals. J. Geophys. Res. Atmos. 2019, 124, 4932–4954. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.C. Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2016, 20, 3183–3191. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Si, B.C.; Biswas, A.; Chau, H.W. Temporally stable patterns but seasonal dependent controls of soil water content: Evidence from wavelet analyses. Hydrol. Process. 2017, 31, 3697–3707. [Google Scholar] [CrossRef]
- Schulte, J.A.; Najjar, R.G.; Li, M. The influence of climate modes on streamflow in the Mid-Atlantic region of the United States. J. Hydrol. Reg. Stud. 2016, 5, 80–99. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Wang, B.; Yan, Y.; Hao, Y.; Zhang, M. Characterizing effects of monsoons and climate teleconnections on precipitation in China using wavelet coherence and global coherence. Clim. Dyn. 2019, 52, 5213–5228. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Song, S.; Zhang, L.; Wang, Z.; Ren, C.; Li, Y. Temperature trends in some major countries from the 1980s to 2019. J. Geogr. Sci. 2022, 32, 79–100. [Google Scholar] [CrossRef]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 32, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Smith, S.L.; Riseborough, D.W.; Cihlar, J. Soil temperature in Canada during the twentieth century: Complex responses to atmospheric climate change. J. Geophys. Res. Atmos. 2005, 110, D03112. [Google Scholar] [CrossRef]
- Qin, J.; Yang, K.; Liang, S.; Guo, X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Chang. 2009, 97, 321–327. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Lettenmaier, D.P.; Xu, J.; Xiao, L.; Li, X. Does elevation-dependent warming hold true above 5000 m elevation? Lessons from the Tibetan Plateau. npj Clim. Atmos. Sci. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Guo, D.; Sun, J.; Yang, K.; Pepin, N.; Xu, Y. Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets. J. Geophys. Res. Atmos. 2019, 124, 8511–8521. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Xu, T.; Dong, J.; Yu, X.; Jiang, Y.; Zhang, Y.; Huang, K.; Zhu, J.; Dong, J.; Xu, Y. Elevation-dependent effects of climate change on vegetation greenness in the high mountains of southwest China during 1982–2013. Int. J. Climatol. 2018, 38, 2029–2038. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Wang, M. Warming amplification with both altitude and latitude in the Tibetan Plateau. Int. J. Climatol. 2022, 42, 3323–3340. [Google Scholar] [CrossRef]
- Giorgi, F.; Hurrell, J.W.; Marinucci, M.R.; Beniston, M. Elevation dependency of the surface climate change signal: A model study. J. Clim. 1997, 10, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Chao, W.C.; Liu, X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: A model study. Clim. Dyn. 2003, 20, 401–413. [Google Scholar] [CrossRef]
- Kuttippurath, J.; Murasingh, S.; Stott, P.; Sarojini, B.B.; Jha, M.K.; Kumar, P.; Nair, P.; Varikoden, H.; Raj, S.; Francis, P. Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environ. Res. Lett. 2021, 16, 024018. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F.; Huffman, G.J. Long-term changes/trends in surface temperature and precipitation during the satellite era (1979–2012). Clim. Dyn. 2016, 46, 1091–1105. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I.; Koutsoyiannis, D. Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. Sci. Total Environ. 2020, 747, 141256. [Google Scholar] [CrossRef] [PubMed]
- Lüdecke, H.-J.; Cina, R.; Dammschneider, H.-J.; Lüning, S. Decadal and multidecadal natural variability in European temperature. J. Atmos. Sol. -Terr. Phys. 2020, 205, 105294. [Google Scholar] [CrossRef]
- Ratna, S.B.; Osborn, T.J.; Joshi, M.; Yang, B.; Wang, J. Identifying teleconnections and multidecadal variability of East Asian surface temperature during the last millennium in CMIP5 simulations. Clim. Past 2019, 15, 1825–1844. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Cui, L.; Ma, Y.; Du, H.; Wen, K. Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res. 2018, 212, 259–272. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Luo, D. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J. Geophys. Res. Atmos. 2009, 114, D02112. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liang, S.; Ma, X.; Zhang, Y.; Si, D.; Liang, P.; Song, Y.; Zhang, J. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteorol. Res. 2014, 28, 693–713. [Google Scholar] [CrossRef]
- Li, S.; Bates, G.T. Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv. Atmos. Sci. 2007, 24, 126–135. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.; Ljungqvist, F.C.; Zhao, Y. The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. J. Quat. Sci. 2013, 28, 653–658. [Google Scholar] [CrossRef]
- Dong, B.; Sutton, R.T.; Scaife, A.A. Multidecadal modulation of El Niño–Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys. Res. Lett. 2006, 33, L08705. [Google Scholar] [CrossRef]
- Zhang, R.; Delworth, T.L. Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett. 2007, 34, L23708. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Cooper, D.J.; Han, S.; Yang, J.; Zhang, Y.; Li, Z.; Zhao, H.; Wang, X. Influence of the atlantic multidecadal oscillation on drought in northern Daxing’an Mountains, Northeast China. Catena 2021, 198, 105017. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhong, F.; Wang, P. Potential linkages of extreme climate events with vegetation and large-scale circulation indices in an endorheic river basin in northwest China. Atmos. Res. 2021, 247, 105256. [Google Scholar] [CrossRef]
- Schulte, J.; Policelli, F.; Zaitchik, B. A waveform skewness index for measuring time series nonlinearity and its applications to the ENSO–Indian monsoon relationship. Nonlinear Process. Geophys. 2022, 29, 1–15. [Google Scholar] [CrossRef]
- Rusu, M.V. The asymmetry of the solar cycle: A result of non-linearity. Adv. Space Res. 2007, 40, 1904–1911. [Google Scholar] [CrossRef]
- Timmermann, A. Decadal ENSO amplitude modulations: A nonlinear paradigm. Glob. Planet. Chang. 2003, 37, 135–156. [Google Scholar] [CrossRef]
- Gray, S.T.; Graumlich, L.J.; Betancourt, J.L.; Pederson, G.T. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys. Res. Lett. 2004, 31, L12205. [Google Scholar] [CrossRef]
Classification | Definition | Abbreviation |
---|---|---|
Surface air temperature | The maximum air temperature at 2 m | SATx |
mean air temperature at 2 m | SATm | |
The minimum air temperature at 2 m | SATn | |
Ground soil temperature | The maximum soil temperature at 0 m | GSTx |
mean soil temperature at 0 m | GSTm | |
The minimum soil temperature at 0 m | GSTn | |
The difference between ground soil and air temperature | Soil–air maximum temperature differences | SATDx |
Soil–air mean temperature differences | SATDm | |
Soil–air minimum temperature differences | SATDn |
Optimal Ensemble Model | Ensemble Weights (%) | R2 Ensemble | R2 Final | |
---|---|---|---|---|
GSTx | v | 1 | 0.870 | 0.859 |
GSTm | bmv | 28.7/23.4/47.8 | 0.919 | 0.777 |
GSTn | bgmv | 40/22.8/29.2/8 | 0.968 | 0.978 |
SATx | bmv | 15.5/16.9/67.6 | 0.902 | 0.953 |
SATm | bgmv | 18.7/9/12/60.2 | 0.925 | 0.951 |
SATn | gmv | 24.5/52.1/23.4 | 0.929 | 0.996 |
Spring | Summer | Autumn | Winter | ||
---|---|---|---|---|---|
Variation rate (°C/year) | GSTx | 0.065 b | 0.033 b | 0.041 b | 0.042 b |
GSTm | 0.048 b | 0.021 b | 0.032 b | 0.039 b | |
GSTn | 0.055 b | 0.03 b | 0.042 b | 0.055 b | |
SATx | 0.049 b | 0.036 b | 0.035 b | 0.038 b | |
SATm | 0.041 b | 0.023 b | 0.027 b | 0.033 b | |
SATn | 0.043 b | 0.023 b | 0.031 b | 0.035 b | |
SATDx | 0.019 a | −0.001 | 0.008 b | 0.005 a | |
SATDm | 0.008 b | -0.003 a | 0.005 b | 0.007 b | |
SATDn | 0.014 b | 0.007 b | 0.013 b | 0.018 b | |
Climate jump | GSTx | ||||
GSTm | |||||
GSTn | 2003 | 2004 | 2004 | ||
SATx | |||||
SATm | 1996 | 2004 | 1997 | ||
SATn | 1997 | 2004 | 2004 | ||
SATDx | |||||
SATDm | 2002 | ||||
SATDn | 2003 | 2003 | 2003 | 2003 |
IMF | GSTx | GSTm | GSTn | SATx | SATm | SATn | SATDx | SATDm | SATDn | |
---|---|---|---|---|---|---|---|---|---|---|
Period (year) | IMF1 | 0.33 | 0.24 | 0.25 | 0.35 | 0.55 | 0.28 | 0.44 | 0.25 | 0.26 |
IMF2 | 0.98 | 0.44 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.67 | |
IMF3 | 1.67 | 1 | 1.33 | 1.67 | 1.9 | 1.54 | 1.74 | 1.38 | 1.08 | |
IMF4 | 4.05 | 1.39 | 3.44 | 4.06 | 4.06 | 4.05 | 3.93 | 3.78 | 2.54 | |
IMF5 | 8.87 | 4.11 | 5.67 | 9.58 | 8.92 | 8.12 | 9.07 | 7.83 | 5.09 | |
IMF6 | 14.85 | 10.14 | 14.06 | 14.45 | 17.3 | 13.94 | 17.37 | 23.41 | 13.18 | |
Variance contribution rate (%) | IMF1 | 9.28 | 50.34 | 7.11 | 12.85 | 18.92 | 5.95 | 18.16 | 7.09 | 25.59 |
IMF2 | 90.26 | 19.03 | 90.06 | 86.73 | 80.8 | 93.28 | 81.54 | 88.3 | 60.51 | |
IMF3 | 0.22 | 8.73 | 2.31 | 0.21 | 0.12 | 0.4 | 0.16 | 1.39 | 11.22 | |
IMF4 | 0.18 | 7.45 | 0.35 | 0.15 | 0.07 | 0.28 | 0.09 | 0.59 | 1.47 | |
IMF5 | 0.03 | 7.53 | 0.08 | 0.04 | 0.05 | 0.06 | 0.04 | 0.84 | 0.65 | |
IMF6 | 0.03 | 4.57 | 0.06 | 0.01 | 0.02 | 0.02 | 0.01 | 1.16 | 0.26 |
Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
GSTx | 69.29/8.42 | 69.02/8.7 | 49.18/16.85 | 59.51/8.7 | 70.11/6.79 |
GSTm | 90.76/1.63 | 90.76/2.99 | 62.77/9.24 | 87.23/1.36 | 91.58/0.82 |
GSTn | 97.28/0.27 | 97.28/0.27 | 91.85/1.09 | 93.21/1.09 | 96.74/0.54 |
SATx | 96.74/0.82 | 93.75/0.0 | 92.93/1.09 | 91.03/0.82 | 92.39/1.09 |
SATm | 95.65/0.82 | 94.84/0.0 | 87.77/1.36 | 91.85/0.82 | 91.85/1.09 |
SATn | 94.84/1.36 | 95.38/0.54 | 90.22/1.9 | 93.21/1.63 | 91.58/1.09 |
SATDx | 39.95/20.65 | 39.13/19.84 | 30.16/30.43 | 39.4/20.92 | 42.66/21.74 |
SATDm | 43.48/23.64 | 43.48/18.75 | 26.63/37.5 | 44.57/19.02 | 55.98/16.03 |
SATDn | 55.43/12.77 | 58.15/13.32 | 52.17/19.84 | 57.34/12.23 | 60.33/9.78 |
Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
GSTx | 81.4/3.96 | 77.24/4.49 | 52.88/0.03 | 59.47/0.96 | 53.82/10.56 |
GSTm | 99.02/0.06 | 94.56/0.0 | 64.62/1.04 | 92.88/0.0 | 89.62/0.0 |
GSTn | 100.0/0.0 | 100.0/0.0 | 100.0/0.0 | 100.0/0.0 | 100.0/0.0 |
SATx | 100.0/0.0 | 88.67/0.07 | 98.48/0.0 | 82.13/2.36 | 96.61/0.0 |
SATm | 99.86/0.0 | 96.79/0.05 | 89.62/0.0 | 73.33/5.92 | 73.26/0.01 |
SATn | 95.55/0.18 | 94.02/0.14 | 99.88/0.0 | 93.52/0.0 | 88.16/0.52 |
SATDx | 37.31/27.03 | 52.0/11.49 | 23.45/10.64 | 24.28/13.2 | 15.15/53.49 |
SATDm | 50.75/13.92 | 30.08/8.23 | 10.88/42.18 | 83.93/0.78 | 65.55/4.48 |
SATDn | 78.78/1.44 | 56.25/10.06 | 76.7/1.24 | 81.07/0.23 | 77.39/1.09 |
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
GSTx | −0.008 b | −0.007 b | −0.001 | −0.003 |
GSTm | 0.003 b | 0.004 b | −0.001 | 0.005 b |
GSTn | 0.003 b | 0.008 b | 0.026 b | 0.029 b |
SATx | −0.005 b | 0.001 | −0.002 | 0.008 b |
SATm | −0.005 b | 0.005 b | −0.024 b | −0.003 |
SATn | 0.008 | 0.006 b | −0.001 | 0.005 b |
SATDx | −0.001 | −0.004 | 0.008 b | −0.012 b |
SATDm | 0.01 b | −0.005 a | 0.02 b | 0.006 b |
SATDn | 0.004 | 0.003 b | 0.028 b | 0.031 b |
GSTm | GSTx | GSTn | SATm | SATx | SATn | SATDx | SATDn | SATDm | |
---|---|---|---|---|---|---|---|---|---|
AMO | 12.03 | 11.61 | 5.18 | 12.31 | 10.9 | 12.11 | 5.25 | 7.62 | 6.02 |
AO | 5.81 | 6.55 | 3.97 | 4.77 | 4.7 | 4.22 | 7.19 | 8.95 | 8.54 |
MEI | 3.85 | 4.6 | 2.57 | 4.19 | 3.81 | 3.89 | 9.34 | 8.28 | 12.37 |
NAO | 3.88 | 4.32 | 2.81 | 3.46 | 3.77 | 2.52 | 11.22 | 13.7 | 13.76 |
PDO | 4.34 | 3.86 | 4.82 | 3.51 | 4.36 | 3.51 | 12.01 | 8.43 | 9.27 |
PNA | 3.38 | 4.76 | 3.77 | 5.24 | 5.06 | 4.64 | 9.38 | 5.67 | 1.58 |
Interannual Scale | Interdecade Scale | ||||||||
---|---|---|---|---|---|---|---|---|---|
The Most Influential Large-Scale Factor | Coherence Period (Year) | Years | Phase Difference (°) | Leads/Lags (Month) | Coherence Period (Year) | Years | Phase Difference (°) | Leads/Lags (Year) | |
GSTx | AMO | 3.7 | 1989–1993 | 75.9 | +9.3 | ||||
GSTm | AMO | 3.7 | 1988–1997 | 47 | +5.8 | ||||
GSTn | AMO | 3.9 | 1991–2001 | 11.1 | +1.4 | ||||
SATx | AMO | 3.7 | 1988–1992 | 59.2 | +7.3 | 10.4 | 1980–1985 | 11.3 | +0.32 |
SATm | AMO | 3.7 | 1986–1997 | 40.6 | +5 | 10.4 | 1980–1997 | −7.3 | −0.2 |
SATn | AMO | 3.7 | 1988–2000 | 23.6 | +2.9 | ||||
SATDx | PDO | 2.1 | 2010–2015 | 35.3 | +2.4 | 12.4 | 1980–2019 | −161.7 | −5.5 |
SATDm | NAO | 12.4 | 1980–2019 | −86.1 | −3 | ||||
SATDn | NAO | 13.1 | 1980–2019 | −57.8 | −2.1 |
Maximum Temperature | Mean Temperature | Minimum Temperature | ||||
---|---|---|---|---|---|---|
Combination | PASC (%) | Combination | PASC (%) | Combination | PASC (%) | |
GST | AMO | 11.61 | AMO | 12.03 | AMO | 5.18 |
AMO+AO | 12.96 | AMO+NAO | 12.60 | AMO+PDO | 21.40 | |
AMO+AO+MEI | 9.93 | AMO+NAO+PNA | 12.65 | AMO+PDO+NAO | 18.68 | |
AMO+AO+MEI+NAO | 9.91 | AMO+NAO+PNA+AO | 11.69 | AMO+PDO+NAO+PNA | 15.23 | |
SAT | AMO | 10.90 | AMO | 12.31 | AMO | 12.11 |
AMO+AO | 11.06 | AMO+NAO | 12.28 | AMO+PNA | 12.32 | |
AMO+AO+NAO | 9.70 | AMO+NAO+PNA | 11.49 | AMO+PNA+NAO | 12.33 | |
AMO+AO+NAO+PNA | 9.81 | AMO+NAO+PNA+AO | 10.90 | AMO+PNA+NAO+PDO | 12.02 | |
SATD | PDO | 12.01 | NAO | 13.76 | NAO | 13.70 |
PDO+PNA | 17.15 | NAO+PDO | 16.67 | NAO+AMO | 22.82 | |
PDO+PNA+NAO | 13.42 | NAO+PDO+AMO | 14.67 | NAO+AMO+MEI | 14.77 | |
PDO+PNA+NAO+AMO | 13.51 | NAO+PDO+AMO+AO | 14.24 | NAO+AMO+MEI+AO | 13.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Cheng, Q.; Wang, P. Three-Dimensional Dynamic Variations of Ground/Air Surface Temperatures and Their Correlation with Large-Scale Circulation Indexes in Southwest China (1980–2019). Atmosphere 2022, 13, 1031. https://doi.org/10.3390/atmos13071031
Jin H, Cheng Q, Wang P. Three-Dimensional Dynamic Variations of Ground/Air Surface Temperatures and Their Correlation with Large-Scale Circulation Indexes in Southwest China (1980–2019). Atmosphere. 2022; 13(7):1031. https://doi.org/10.3390/atmos13071031
Chicago/Turabian StyleJin, Hanyu, Qingping Cheng, and Ping Wang. 2022. "Three-Dimensional Dynamic Variations of Ground/Air Surface Temperatures and Their Correlation with Large-Scale Circulation Indexes in Southwest China (1980–2019)" Atmosphere 13, no. 7: 1031. https://doi.org/10.3390/atmos13071031
APA StyleJin, H., Cheng, Q., & Wang, P. (2022). Three-Dimensional Dynamic Variations of Ground/Air Surface Temperatures and Their Correlation with Large-Scale Circulation Indexes in Southwest China (1980–2019). Atmosphere, 13(7), 1031. https://doi.org/10.3390/atmos13071031