
Citation: Jin, H.; Cheng, Q.; Wang, P.

Three-Dimensional Dynamic

Variations of Ground/Air Surface

Temperatures and Their Correlation

with Large-Scale Circulation Indexes

in Southwest China (1980–2019).

Atmosphere 2022, 13, 1031.

https://doi.org/10.3390/

atmos13071031

Academic Editor: Baojie He

Received: 28 May 2022

Accepted: 25 June 2022

Published: 28 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Three-Dimensional Dynamic Variations of Ground/Air Surface
Temperatures and Their Correlation with Large-Scale
Circulation Indexes in Southwest China (1980–2019)
Hanyu Jin 1, Qingping Cheng 1,2,3,* and Ping Wang 4

1 School of Geography and Ecotourism, Southwest Forestry University, Kunming 650224, China;
henrychin2006@gmail.com

2 Southwest Research Center for Eco-Civilization, National Forestry and Grassland Administration,
Kunming 650224, China

3 National (Yunnan Province) Field Science Observation and Research Station Yulong Snow Mountain
Cryosphere and Sustainable Development, Northwest Institute of Eco-Environment and Resources,
Chinese Academy of Sciences, Lanzhou 730000, China

4 Faculty of Geography, Yunnan Normal University, Kunming 650500, China; ynwangping@ynnu.edu.cn
* Correspondence: cqp@swfu.edu.cn; Tel.: +86-931-4967242; Fax: +86-931-8273894

Abstract: Air/soil temperatures play important roles in land–atmosphere interactions. The three-
dimensional (temporal, spatial, and vertical) variations of maximum, mean, and minimum ground
soil temperature at 0 cm (GSTx, GSTm, and GSTn, respectively), surface air temperature at 2 m
(SATx, SATm, and SATn, respectively), and soil–air temperature difference (SATDx, SATDm, and
SATDn, respectively) and their potential linkages with large-scale indexes in Southwest China during
1980–2019 were analyzed. Variations of GST and SAT at the majority of stations (pixels) exhibited
significant (p ≤ 0.05) warming, albeit at different rates; consequently, SATD exhibited different
variation. Moreover, the period of GST, SAT, and SATD was similar in intra-annual and interannual
oscillation but was different in interdecadal oscillation. The variation rate of GST, SAT, and SATD
exhibited significant (p ≤ 0.05) correlation with elevation, but with different variation gradient.
Notably, asymmetric variation of SATDx (downward trend) and of SATDn (upward trend) with
elevation was found at elevations >3 km. Wavelet coherence showed that the Atlantic Multidecadal
Oscillation is the dominant factor affecting GST and SAT, whereas the Pacific Decadal Oscillation and
the North Atlantic Oscillation make the greatest contributions to SATD. It was found that GST, SAT,
and SATD exhibit different variations under the effects of global warming, the driving mechanism of
which requires further study.

Keywords: three-dimensional variation; ground soil temperature; large-scale indexes; Southwest China

1. Introduction

The connection between soil and air temperatures is one of the fundamental aspects
of land–atmosphere interactions [1–4]. In such interactions, although soil temperature is
different from air temperature in terms of value, oscillation [5], and variation trend [6],
the two parameters are normally closely coupled. Previous research has investigated
both the fluctuation of soil temperature at different depths [3,7–10] and the relationship
between soil temperature and air temperature [11–14]. However, this study focused on
soil temperature measured at a depth of 0 cm, i.e., ground soil temperature (GST), and
surface air temperature (SAT) because the difference between GST and SAT (i.e., SATD)
is proportional to the surface sensible heat flux [15,16], which has substantial influence
on soil microorganisms [17], vegetation [18], and climate [14,19]. Meanwhile, under the
background of global warming, GST has been found to differ from SAT in terms of its
variation [1,6] and trend [2,7,20]. Therefore, because surface temperature has been and
will be accompanied by widespread change in this context [21], revealing the different
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variations of GST-, SAT-, and SATD-related indexes and their responses to climate change is
of great importance for understanding land–atmosphere interactions and energy exchange.

In recent years, GST, SAT, and SATD have been the subject of some research in China.
For instance, He and Wang discovered that the multiyear national average GST and SAT
lapse rate were comparable (i.e., 0.53 ◦C/100 m) [22]. Using the detrended fluctuation
analysis method, Jiang et al. found that GST appears more sensitive for detecting per-
sistent temperature change in comparison with SAT [11]. According to Wang et al., the
rate of warming of GST in northern China is higher than that in southern regions [23].
Subsequently, Liao et al. reported that the maximum SATD occurs in China during the
rainy season, which is compatible with the annual distribution of solar radiation [20].
Additionally, SATD has been found to exhibit a clearer trend of increase in northern regions
of China than in southern regions [2]. Zhang et al. revealed that SAT and GST have a
lagged correlation that is affected by snow cover [3]. The SATD on the Tibetan Plateau has
been shown to present variation with periodicity of approximately 2 years [14]. Recent
research has found that GST exhibited a significant rate of warming of 0.071 ◦C/year during
1983–2013 [24], which has increased from the rate of 0.047 ◦C/year during 1960–2014 [25].

The above research has revealed the spatiotemporal variation in air and ground
temperatures in China, as well as possible causes. However, such analysis was concerned
primarily with the spatiotemporal pattern of variation. Owing to elevation-dependent
warming, the rate of warming of SAT incorporates an elevation gradient that reflects
the fact that high-elevation regions experience more rapid change than low-elevation
regions [26–31]. Therefore, it is important to ascertain whether the GST and SATD are
consistent with the SAT that exhibits elevation gradient variation. Additionally, other earlier
studies revealed the influence of precipitation [24,32], wind [33], snow depth [4,15,34–36],
sunshine duration [37], and soil moisture [38] on air and ground temperatures. However,
the average climatic temperature is closely governed by large-scale atmospheric circulation
patterns [39]. Temperature change is affected by external forcing and by internal variability
of the climate system [40,41]. The internal variability of the climate system includes the El
Niño–Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation
(AO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO),
and it has significant effects on global and regional temperature [42–45]. However, few
studies have investigated the potential associations of SAT, GST, and SATD with large-scale
circulation indexes from the perspective of multiscale coherence.

Southwest China (SWC) has complex topography and is subject to substantial re-
gional/local climate change [46]. However, the characteristics of GST, SAT, and SATD in
SWC remain poorly understood, and further scientific research is needed. In this study,
SWC was selected as the study area. Because there is lack of availability of meteorological
observations from high-elevation regions in SWC, i.e., where elevation is >4000 m, daily
observed data from regional meteorological stations were interpolated using a digital ele-
vation model (DEM) into a raster with 1 km resolution using an ensemble of six algorithms
(i.e., boosted regression tree, neural network, generalized additive model, multivariate
adaptive regression spline, support vector machine, and random forest) to reveal the three-
dimensional variation of SAT, GST, and SATD. Following Ma et al. [47], three-dimensional
variation is defined as the spatiotemporal and vertical variation of GST-, SAT-, and SATD-
related indexes in this study. Furthermore, wavelet transform coherence (WTC) was used
to reveal potential linkages between GST, SAT, SATD, and the large-scale indexes.

The structure of the remainder of this paper is as follows. Section 2 introduces the
study area, data sources, and methods used. Section 3.1 presents the three-dimensional
variation of SAT, GST, and SATD, while Section 3.2 reveals potential linkages between
SAT, GST, SATD, and the large-scale indexes. Sections 4 and 5 provide a discussion based
on the results of the study and state the derived conclusions, respectively. The objective
of this paper was to attempt to answer the following two questions. (1) What were the
characteristics of the three-dimensional variation of GST, SAT, and SATD in SWC during
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1980–2019? (2) What potential linkages existed between GST, SAT, SATD, and the large-scale
circulation indexes during 1980–2019?

2. Study Area, Data, and Methods
2.1. Study Area

The study area covers the geographical region of 20◦54′–34◦19′ N, 97◦21′–112◦4′ E
(Figure 1). It extends across the transition zone from the first ladder to the second ladder
of terrain in China, with average elevation of 2906 m and a relative elevation difference
of 6854 m. The terrain elevation difference is large, and the landform types are complex.
From the southeast to the northwest, the region is affected by tropical monsoon, subtropical
monsoon, and plateau monsoon climates. Under the alternating influence of these different
monsoon climate types, heat and precipitation are abundant. Annual average temperature
is between −2.8 and 23.9 ◦C, annual cumulative precipitation is 54.6–2675.6 mm, annual
average relative humidity is 46.6–85.0%, and the annual cumulative number of sunshine
hours is 844–2531 h. Owing to the complex terrain and the characteristics of the monsoon
circulations, there is substantial spatial difference in terms of the impact of climate change.
Therefore, the study area was divided into three subareas, i.e., the Hengduan Mountains
(HDM), Yungui Plateau (YGP), and Sichuan Basin (SCB).

Figure 1. Distribution of meteorological stations, DEM and subarea division in Southwest China.

2.2. Data Resources and Quality Control

Daily mean, maximum, and minimum data of SAT and GST observed at 400 mete-
orological stations were obtained from the China Meteorological Data Sharing Service
System of the National Meteorological Information Center V3.0 (http://www.nmic.gov.cn/
(accessed on 31 December 2019)). Considering the quality of the data, the fact that for GST
there exists large errors before 1980, and due to the requirement for additional stations for
training during the interpolation process, we mainly concentrated on the period 1980–2019.
However, for various natural and human/instrument-related reasons, the data set con-
tained certain missing or erroneous values. Therefore, we discarded data from any station
that had missing values for a period longer than five consecutive days. Ultimately, data
from 368 out of the original 400 stations (67, 182, and 119 stations in HDM, YGP, and SCB)
were selected for use in this study. Any further gaps in the data set were filled by applying
linear regression between the elevation and data from surrounding stations that were
within a 50 km diameter circle centered on the target meteorological station. The observed
data were interpolated into a raster with 1 km resolution using the DEM and the R Machis-
plin package. Furthermore, nine GST-, SAT-, and SATD-related indexes were calculated
(Table 1). The 1 km resolution DEM was derived from the Geospatial Data Cloud of China
(http://www.gscloud.cn/ (accessed on 31 December 2019)). Additionally, six large-scale in-
dexes (i.e., the AO, AMO, Multivariate ENSO Index (MEI), NAO, PDO, and Pacific/North
American (PNA) teleconnection) were adopted to reveal potential linkages with the GST-,

http://www.nmic.gov.cn/
http://www.gscloud.cn/
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SAT-, and SATD-related indexes. The AO, AMO, PDO, NAO, and PNA indexes were de-
rived from the National Oceanic and Atmospheric Administration Physical Sciences Labora-
tory website (https://psl.noaa.gov/data/climateindices/ (accessed on 31 December 2019)),
while the MEI was derived from http://www.esrl.noaa.gov/psd/enso/mei/index.html
(accessed on 31 December 2019).

Table 1. The indexes of the ground soil temperature, surface air temperature and differences between
ground soil and air temperature.

Classification Definition Abbreviation

Surface air temperature
The maximum air temperature at 2 m SATx

mean air temperature at 2 m SATm
The minimum air temperature at 2 m SATn

Ground soil temperature
The maximum soil temperature at 0 m GSTx

mean soil temperature at 0 m GSTm
The minimum soil temperature at 0 m GSTn

The difference between ground
soil and air temperature

Soil–air maximum temperature differences SATDx
Soil–air mean temperature differences SATDm

Soil–air minimum temperature differences SATDn

2.3. Methodology
2.3.1. Data Interpolation

The observed data from the meteorological stations were interpolated into a raster
with 1 km resolution using an ensemble of up to six algorithms (i.e., boosted regression
tree, neural network, generalized additive model, multivariate adaptive regression spline,
support vector machine, and random forest). During model tuning, each algorithm was
systematically weighted from 0–1, and the fit of the ensemble model was evaluated. The
best-performing model was determined via k-fold cross-validation (k = 10), and the model
with the lowest residual sum of squares and lowest AIC (Akaike information criterion) of
the test data was selected. Finally, the residuals were further calculated and interpolated
using thin-plate-smoothing splines, which secondarily corrected the final ensemble model.
However, if the R2 value of final correction was greater than the R2 value of the ensemble,
the final correction was discarded. For example, multiyear averaged GST- and SAT-related
indexes were interpolated by the six algorithms. The weights and R2 values of the GST-
and SAT-related index interpolation results are presented in Table 2.

Table 2. The interpolation statistics of multiyear averaged GST- and SAT-related indexes.

Optimal Ensemble Model Ensemble Weights (%) R2 Ensemble R2 Final

GSTx v 1 0.870 0.859
GSTm bmv 28.7/23.4/47.8 0.919 0.777
GSTn bgmv 40/22.8/29.2/8 0.968 0.978
SATx bmv 15.5/16.9/67.6 0.902 0.953
SATm bgmv 18.7/9/12/60.2 0.925 0.951
SATn gmv 24.5/52.1/23.4 0.929 0.996

Note, b—boosted regression tree, g—generalized additive model, m—multivariate adaptive regression spline,
v—support vector machines. The ensemble weight is the percentage contribution of each algorithm to the
ensemble model.

2.3.2. Extraction in Different Elevation Bins

Elevation was divided into 500 m bins to detect the elevation-dependent variation
in SWC and the subareas. For example, for the 1000–1500 m bin, the variation rate of
the stations and pixels in the bin was calculated. Then, the linear regression between the
variation rate of each bin and elevation was used to quantify the elevation-dependent
variation. The numbers of stations and pixels included in each of the bins are shown in
Figure 2.

https://psl.noaa.gov/data/climateindices/
http://www.esrl.noaa.gov/psd/enso/mei/index.html
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Figure 2. Number of observations and pixels in each elevation bin in Southwest China. The blue
histogram denotes the number of observations, and the orange line denotes the number of pixels.

2.3.3. Other Methods

The modified Mann–Kendall test [48,49] and the moving mean difference method [49]
are used to detect the significance of trends and to identify climate jump in time series.
Moreover, ensemble empirical mode decomposition can decompose time series into intrin-
sic mode functions (IMFs) that can represent the oscillation of the original time series on a
specific timescale [50,51]. Following Qian et al., the variance contribution rate was deter-
mined to assess the relational importance of each IMF component [52]. Furthermore, WTC
was used to reveal potential linkages between the GST-, SAT-, and SATD-related indexes
and the large-scale indexes [53]. WTC is based on the continuous wavelet transform [54],
and it is a correlation coefficient in time–frequency space that can be used to quantify the
relationship between two nonstationary series [55]. In contrast to WTC, multi-wavelet
coherence (MWC) can determine the optimal factors and reveal their relationship [55,56]. In
MWC, the percentage area of significant coherence (PASC) is used to quantify the explana-
tion attributable to a particular predictor factor. When adding a particular predictor factor,
if the associated PASC increases by at least 5%, then the particular predictor factor can be
considered credible [57]. For WTC and MWC, the Monte Carlo approach (1000 count) based
on a red noise background can be used to calculate the significance level. Additionally,
global coherence can be used to evaluate the correlation between two time series at different
scales, while neglecting the influence of time [58,59].

3. Results
3.1. Three-Dimensional Variation of Each Index
3.1.1. Temporal Trend

The trends and climate jump of the regional annual averaged GST-, SAT-, and SATD-
related indexes in SWC are illustrated in Figure 3, and details of the seasonal averaged GST-,
SAT-, and SATD-related indexes are summarized in Table 3. Additionally, the variation
rate and climate jump of the annual and seasonal averaged GST-, SAT-, and SATD-related
indexes of the subareas are presented in Tables S1 and S2, respectively. On an annual
timescale, the regional annual averaged time series (1980–2019) of GST- and SAT-related
indexes all show significant (p ≤ 0.01) warming in SWC (Figure 3a–f) and the subareas
(Table S1). In addition to GSTx in HDM, the warming rates of the GST-related indexes
are greater than those of the SAT-related indexes (Table S1). Consequently, the regional
annual averaged SATD-related indexes exhibit an upward trend in SWC and the subareas,
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but the regional averaged SATDx exhibits a decreasing trend in HDM (Figure 3g–i and
Table S1). The regional annual averaged SATDx and SATDn show the converse variation
in HDM. Moreover, the regional annual averaged GST-, SAT-, and SATD-related indexes
(except GSTx and SATDx) show a significant (p ≤ 0.05) climate jump between 1997 and
2003 (Figure 3 and Table 3). On the seasonal timescale, apart from the trends of decrease
in HDM in the summer, autumn, and winter averaged SATDx of −0.005, −0.007, and
−0.009 ◦C/year (p ≤ 0.05), respectively, the seasonal averaged GST-, SAT-, and SATD-
related indexes all show a significant (p ≤ 0.05) trend of warming (Tables 3 and S1). The
fastest rates of warming of the regional averaged GST- and SAT-related indexes in SWC
and the subareas (except in HDM) are found in spring (Tables 3 and S1). Consistent with
the climate jump on the annual timescale, the regional seasonal averaged GST-, SAT-, and
SATD-related indexes in SWC and the subareas also show a climate jump between 1997
and 2004. However, a climate jump of the regional seasonal averaged GSTx is not evident
in any season in the subareas (Table S2).

Figure 3. Annual averaged timeseries of (a–c) GST-, (d–f) SAT-, and (g–i) SATD-related indexes
from 1980 to 2019 in Southwest China (a denotes significant at 0.05 level and b denotes significant at
0.01 level. Red dots denote climate jump. Slope denotes variation rate from 1980 to 2019).

Table 3. Variation rate and climate jump of regional seasonal averaged GST-, SAT-, and SATD-related
indexes in Southwest China during 1980–2019.

Spring Summer Autumn Winter

Variation rate (◦C/year)

GSTx 0.065 b 0.033 b 0.041 b 0.042 b

GSTm 0.048 b 0.021 b 0.032 b 0.039 b

GSTn 0.055 b 0.03 b 0.042 b 0.055 b

SATx 0.049 b 0.036 b 0.035 b 0.038 b
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Table 3. Cont.

Spring Summer Autumn Winter

SATm 0.041 b 0.023 b 0.027 b 0.033 b

SATn 0.043 b 0.023 b 0.031 b 0.035 b

SATDx 0.019 a −0.001 0.008 b 0.005 a

SATDm 0.008 b -0.003 a 0.005 b 0.007 b

SATDn 0.014 b 0.007 b 0.013 b 0.018 b

Climate jump

GSTx
GSTm
GSTn 2003 2004 2004
SATx
SATm 1996 2004 1997
SATn 1997 2004 2004

SATDx
SATDm 2002
SATDn 2003 2003 2003 2003

Where a denotes significant at 0.05 level and b denotes significant at 0.01 level.

3.1.2. Periodic Analysis

The ensemble empirical mode decomposition of the regional monthly averaged GST,
SAT-, and SATD-related indexes in SWC is illustrated in Figure 4, and Table 4 presents the
period and variance contribution rate of each IMF in SWC. Additional details of the period
and variance contribution of the regional monthly averaged GST-, SAT-, and SATD-related
indexes in the subareas are presented in Table S3. As shown in Figure 4, the regional
monthly average of the GST-, SAT-, and SATD-related indexes can be decomposed into six
IMFs: intra-annual oscillation mode (IMF1 and 2), interannual oscillation mode (IMF3–5),
and interdecadal oscillation mode (IMF6) (Figure 4). The IMF1 oscillation of the regional
monthly averaged GST-, SAT-, and SATD-related indexes of SWC and the subareas is con-
centrated on 0.2–0.5 years (Tables 4 and S3). Specifically, the period of the regional monthly
averaged SAT is greater than that of the GST (Tables 4 and S3). For IMF2, except for the
regional monthly averaged GSTm and SATDn that have low-frequency oscillations of 0.2
and 0.6 years (except SATDn in SCB), respectively, the other indexes exhibit 1-year oscilla-
tion, and the variance contribution rate reaches 80% (Tables 4 and S3). For the interannual
oscillation mode, the dominant IMF oscillation of the regional monthly averaged GST-,
SAT-, and SATD-related indexes in SWC and the subareas is IMF3 (oscillation: 1–2 years),
which has the greater variance contribution in comparison with that of both IMF4 and
IMF5. The oscillation of IMF4 and IMF5 is 2–9 years, which is similar to the 2–7-years
period of an ENSO event. From the above, it can be determined that GST also exhibits
a shorter period than SAT in terms of the interannual oscillation mode (Tables 4 and S3).
For the interdecadal oscillation mode, except for IMF6 of the regional monthly averaged
SATDn in HDM and GSTn in YGP that show oscillation of 10.14 years, consistent with the
period of sunspot activity (i.e., 11 and 23.41 years), the other indexes show low-frequency
oscillation of near 14–23 years (Tables 4 and S3). However, the period of IMF6 in the
subareas shows considerable difference (Table S3). For example, the IMF6 period of GSTm
is 10.7, 11.9, and 14.1 years in HDM, YGP, and SCB, respectively. Overall, the periods of
the regional monthly averaged GST-, SAT-, and SATD-related indexes in SWC and the
subareas are similar in terms of high-frequency oscillation (IMF1–3) and different in terms
of low-frequency oscillation (IMF4–6).
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Figure 4. Decompositions of monthly averaged (a–c) GST-, (d–f) SAT-, and (g–i) SATD-related
indexes from 1980 to 2019 into six timescales intrinsic mode function (IMF1–6) using the EEMD.

Table 4. Period, variance contribution rate of monthly averaged GST-, SAT-, and SATD-related
indexes from 1980 to 2019 in Southwest China.

IMF GSTx GSTm GSTn SATx SATm SATn SATDx SATDm SATDn

Period (year)

IMF1 0.33 0.24 0.25 0.35 0.55 0.28 0.44 0.25 0.26
IMF2 0.98 0.44 0.98 0.98 0.98 0.98 0.98 0.98 0.67
IMF3 1.67 1 1.33 1.67 1.9 1.54 1.74 1.38 1.08
IMF4 4.05 1.39 3.44 4.06 4.06 4.05 3.93 3.78 2.54
IMF5 8.87 4.11 5.67 9.58 8.92 8.12 9.07 7.83 5.09
IMF6 14.85 10.14 14.06 14.45 17.3 13.94 17.37 23.41 13.18

Variance contribution
rate (%)

IMF1 9.28 50.34 7.11 12.85 18.92 5.95 18.16 7.09 25.59
IMF2 90.26 19.03 90.06 86.73 80.8 93.28 81.54 88.3 60.51
IMF3 0.22 8.73 2.31 0.21 0.12 0.4 0.16 1.39 11.22
IMF4 0.18 7.45 0.35 0.15 0.07 0.28 0.09 0.59 1.47
IMF5 0.03 7.53 0.08 0.04 0.05 0.06 0.04 0.84 0.65
IMF6 0.03 4.57 0.06 0.01 0.02 0.02 0.01 1.16 0.26

3.1.3. Spatial Variation

Box-and-whisker plots of the annual averaged GST, SAT, and SATD variation rate of
the observations during 1980–2019 are shown in Figure 5, and the seasonal variation rates
of the observations are shown in Figure S1. From the boxplot figures, it can be seen that
for the majority of stations the variation rate of the observed annual/seasonal averaged
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GSTx shows obvious fluctuation in comparison with the variation rate of the observed
annual/seasonal averaged SATx and SATDx (Figures 5 and S1). Moreover, it can be seen
that the annual/seasonal averaged GST-, SAT-, and SATD-related indexes of the majority
of observations exhibit increasing trends, and that the annual/seasonal averaged GST
variation rate is greater than the variation rate of the annual/seasonal averaged SAT-related
indexes (except GSTm in summer) (Figures 5 and S1). To investigate the spatiotemporal
pattern, the monthly and annual observed GST and SAT were interpolated into a 1 km
resolution raster, as described in Section 2.3.1, and SATD was calculated by subtracting the
SAT raster from the GST raster. Then, the variation rate at each pixel was calculated using
the modified Mann–Kendall test (retaining only those pixels that satisfied the condition
p ≤ 0.05).

Figure 5. Box-and-whisker plots of trends in annual averaged GST-, SAT-, and SATD-related indexes
from 1980–2019 in Southwest China (a) maximum temperature, (b) mean temperature, (c) minimum
temperature (horizontal line represents median, and circle represents average).

The distribution of the spatial variation rate and the distribution of the interval of the
annual averaged GST-, SAT-, and SATD-related indexes are shown in Figure 6, and the
distribution of the seasonal variation rate and the distribution of the interval of each index
are shown in Figures S2–S5. Meanwhile, the percentages of stations and pixels in SWC
with significant (p ≤ 0.05) positive/negative trends of the annual/seasonal averaged GST-,
SAT-, and SATD-related indexes are summarized in Tables 5 and 6, respectively. Table S4
presents the percentages of stations with significant (p≤ 0.05) increasing/decreasing trends
in annual/seasonal averaged GST-, SAT-, and SATD-related indexes, and the percentages of
pixels with significant (p≤ 0.05) increasing/decreasing trends in annual/seasonal averaged
GST-, SAT-, and SATD-related indexes in the subareas are presented in Table S5.

Table 5. Percentage of significant (p ≤ 0.05) increasing/decreasing stations of annual and seasonal
averaged GST-, SAT-, and SATD-related indexes in Southwest China from 1980 to 2019.

Annual Spring Summer Autumn Winter

GSTx 69.29/8.42 69.02/8.7 49.18/16.85 59.51/8.7 70.11/6.79
GSTm 90.76/1.63 90.76/2.99 62.77/9.24 87.23/1.36 91.58/0.82
GSTn 97.28/0.27 97.28/0.27 91.85/1.09 93.21/1.09 96.74/0.54
SATx 96.74/0.82 93.75/0.0 92.93/1.09 91.03/0.82 92.39/1.09
SATm 95.65/0.82 94.84/0.0 87.77/1.36 91.85/0.82 91.85/1.09
SATn 94.84/1.36 95.38/0.54 90.22/1.9 93.21/1.63 91.58/1.09

SATDx 39.95/20.65 39.13/19.84 30.16/30.43 39.4/20.92 42.66/21.74
SATDm 43.48/23.64 43.48/18.75 26.63/37.5 44.57/19.02 55.98/16.03
SATDn 55.43/12.77 58.15/13.32 52.17/19.84 57.34/12.23 60.33/9.78
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Figure 6. Significant variation rate of annual averaged (a–c) GST-, (d–f) SAT-, and (g–i) SATD-related
indexes for each pixel from 1980 to 2019 in Southwest China. (Significance test by MMK trend method
at the 0.05 confidence level). The different colors represent the variation rate and the histograms
represent the significant (p ≤ 0.05) percentage of the classified pixel.

Table 6. Percentage of significant (p ≤ 0.05) increasing/decreasing pixels of annual and seasonal
averaged GST-, SAT-, and SATD-related indexes in Southwest China from 1980 to 2019.

Annual Spring Summer Autumn Winter

GSTx 81.4/3.96 77.24/4.49 52.88/0.03 59.47/0.96 53.82/10.56
GSTm 99.02/0.06 94.56/0.0 64.62/1.04 92.88/0.0 89.62/0.0
GSTn 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0 100.0/0.0
SATx 100.0/0.0 88.67/0.07 98.48/0.0 82.13/2.36 96.61/0.0
SATm 99.86/0.0 96.79/0.05 89.62/0.0 73.33/5.92 73.26/0.01
SATn 95.55/0.18 94.02/0.14 99.88/0.0 93.52/0.0 88.16/0.52

SATDx 37.31/27.03 52.0/11.49 23.45/10.64 24.28/13.2 15.15/53.49
SATDm 50.75/13.92 30.08/8.23 10.88/42.18 83.93/0.78 65.55/4.48
SATDn 78.78/1.44 56.25/10.06 76.7/1.24 81.07/0.23 77.39/1.09

On the annual timescale, more than 90% of the stations and pixels in SWC exhibit
a significant (p ≤ 0.05) trends of increase in the annual averaged SAT- and GST-related
indexes (except GSTx) (Tables 5 and 6). However, there is huge difference in the percentages
of the stations and pixels with a significant (p ≤ 0.05) trend of increase between the annual
averaged GSTx and SATx, for which nearly 30% of stations and pixels show the opposite
trend (Tables 5 and 6). For annual averaged SATD-related indexes, fewer than 50% of
stations and pixels of the annual averaged SATDx and SATDm show significant (p ≤ 0.05)
trends of increase, while approximately 78% of stations and 55% of pixels of the annual
averaged SATDn exhibit significant (p ≤ 0.05) trends of increase (Tables 5 and 6). However,
although the majority of annual averaged GST- and SAT-related indexes exhibit trends
of increase, there is difference in the variation rate between the annual averaged GST-
and SAT-related indexes. Consequently, half the stations/pixels of the annual averaged
SATD-related indexes show trends of increase, while the others exhibit decreasing trends.
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The variation rate of the annual averaged GSTx, GSTm, and GSTn is mainly in the range of
0.03–0.06 ◦C/year (i.e., 44%, 47%, and 58% of pixels, respectively) (Figure 6a–c). Consistent
with the variation rate of most of the annual averaged GST-related indexes, the variation
rate of SATx, SATm, and SATn is mainly in the range of 0.03–0.05 ◦C/year (Figure 6d–f).
Moreover, the variation rate of the annual averaged SATDx, SATDm, and SATDn is con-
centrated within 0–0.03 ◦C/year (i.e., 27%, 72%, and 54% of pixels, respectively), which
is lower than that of the GST- and SAT-related indexes (Figure 6g–i). Specifically, for dif-
ferent subareas, the variation rate of the annual averaged GST-, SAT-, and SATD-related
indexes exhibit spatial heterogeneity. For example, in HDM, nearly 90% of stations and
99% of pixels of the annual averaged GSTm and GSTn show significant (p ≤ 0.05) trends
of increase (Tables S4 and S5). However, only 16% of stations and 4% of pixels of annual
averaged GSTx exhibit significant (p ≤ 0.05) trends of decrease of −0.06 to 0 ◦C/year in
northern HDM, and 61% of stations and 74% of pixels exhibit significant (p ≤ 0.05) trends
of increase of 0.06–0.15 ◦C/year in southern HDM (Tables S4 and S5, Figure 6a). Con-
versely, the variation rate of the annual averaged GSTm and GSTn is high in northern HDM
and low in southern HDM (Figure 6b,c). Meanwhile, the annual averaged SATx, SATm,
and SATn show trends of increase of 0.03–0.09 ◦C/year throughout HDM (Figure 6d–f).
From the above, it can be determined that the variation rate of the annual averaged GSTx
is greater (lower) than that of the annual averaged SATx in southern (northern) HDM.
Consequent that SATDx shows a trend of decrease (increase) in northern (southern) HDM
(Figure 6g), and that the annual averaged SATDm and SATDn show trends of increase
throughout HDM (Figure 6h,i). In YGP, similar to the percentage of significant (p ≤ 0.05)
increasing/decreasing trends of the annual averaged GSTx in HDM, approximately 63%
of stations and 77% of pixels of GSTx show significant (p ≤ 0.05) trends of increase, and
approximately 90% of stations and pixels of the annual averaged SATx exhibit significant
(p ≤ 0.05) trends of increase (Tables S4 and S5). In southwestern and northern YGP, the
annual averaged GSTx, GSTm, SATDx, and SATDm show significant (p ≤ 0.05) trends of
decrease. Meanwhile, in comparison with surrounding areas, there is a warming center
(0.12–0.08 ◦C/year) in the dry hot valley of the Red River. In SCB, for GSTx, more than 80%
of stations and pixels exhibit significant (p ≤ 0.05) trends of increase, which is a greater per-
centage than that found for the other two subareas (Tables S4 and S5). The variation rate of
the seasonal (except spring and summer) averaged GST-related indexes is concentrated in
the range of 0.03–0.06 ◦C/year (Figure S2–S4 and S5a–c). However, the variation rate of all
seasonal averaged SAT-related indexes is generally within the range of 0.02–0.05 ◦C/year
(Figure S2–S4 and S5d–f). Moreover, the variation rate of the seasonal averaged SATDm
and SATDn indexes is mostly within the range of 0.11–0.15 ◦C/year (78% and 53% pixels),
while the seasonal averaged SATDx of half of the pixels exhibits a significant decreasing
(mostly −0.13 to −0.01 ◦C/year) (Figure S2–S4 and S5g–i). Furthermore, the percentages
of the observations and pixels with significant (p ≤ 0.05) increasing(decreasing) trends of
averaged GSTx and GSTm in SWC and the subareas (except HDM) in summer are lower
than those in other seasons (Tables 5, 6, S4 and S5). Overall, the spatial evolution of the
annual/seasonal averaged GST-, SAT-, and SATD-related indexes shows an upward trend
but with huge spatial heterogeneity.

3.1.4. Elevation-Dependent Variation Analysis

To investigate the elevation-dependent variation, the variation rate in each elevation
bin was calculated, as described in Section 2.3.2. The annual variation rates of the averaged
GST-, SAT-, and SATD-related indexes in all elevation bins in SWC are shown in Figure 7,
and Table 7 summarizes the variation of the elevation gradient of the seasonal averaged
GST-, SAT-, and SATD-related indexes in SWC. Overall, in SWC, in addition to the annual
averaged GSTx and SATDx that show downward trends of annual variation rate with
elevation, the variation rate of the annual averaged GST-, SAT-, and SATD-related indexes
exhibit significant (p≤ 0.05) upward trends with elevation (Figure 7). Specifically, the eleva-
tion gradient variation of the annual averaged GSTx, GSTm, and GSTn is−0.002, 0.017, and
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0.023 ◦C/(year·km), respectively (Figure 7). Meanwhile, the annual averaged SATx, SATm,
and SATn show a warming elevation gradient of 0.001, 0.012, and 0.013 ◦C/(year·km), re-
spectively. The annual averaged warming elevation gradient of GSTm and GSTn is greater
than that of the annual averaged SATm and SATn. Furthermore, the annual averaged
GSTm, GSTn, SATm, and SATn exhibit an inflection point at 3 km, above which the increase
in the variation rate is enhanced (Figure 7). The annual averaged SATDx, SATDm, and
SATDn show significant (p ≤ 0.01) difference in the elevation variation of −0.01, 0.006, and
0.01 ◦C/(year·km), respectively. The variation of the elevation gradient of the seasonal
averaged GST-, SAT-, and SATD-related indexes exhibits seasonal differences. For example,
the averaged GSTx variation rate in all seasons shows an upward trend, whereas only the
variation rate of summer and autumn averaged SATx exhibits an upward trend (Table 7).
The slopes of the annual and seasonal averaged GST-, SAT-, and SATD-related indexes with
elevation in the subareas are shown in Table S6. The variation of the elevation gradient
of the annual averaged GST and SAT shows consistency in the three subareas (except the
annual averaged GSTx in YGP). Meanwhile, in comparison with the elevation gradient in
YGP and SCB, the variation of the elevation gradient in HDM of GSTm, GSTn, SATm, and
SATn is more significant on the annual timescale (Table S6).

Figure 7. Variation rate of annual averaged (a–c) GST-, (d–f) SAT-, and (g–i) SATD-related indexes at
each elevation bin in Southwest China from 1980 to 2019 (Box-and-whisker, where horizontal line
and circle in box-and-whisker denote median and average, respectively, represents variation rate of
observed meteorological stations at each elevation bin. Blue folded line represents mean variation
rate of interpolated raster at each elevation bin. s denotes slope between annual variation rate of each
index with elevation).
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Table 7. The slope (◦C/(year·km)) of variation rate of seasonal averaged GST-, SAT-, and SATD-
related indexes from 1980 to 2019 with elevation from 64 to 6304 m in Southwest China.

Spring Summer Autumn Winter

GSTx −0.008 b −0.007 b −0.001 −0.003
GSTm 0.003 b 0.004 b −0.001 0.005 b

GSTn 0.003 b 0.008 b 0.026 b 0.029 b

SATx −0.005 b 0.001 −0.002 0.008 b

SATm −0.005 b 0.005 b −0.024 b −0.003
SATn 0.008 0.006 b −0.001 0.005 b

SATDx −0.001 −0.004 0.008 b −0.012 b

SATDm 0.01 b −0.005 a 0.02 b 0.006 b

SATDn 0.004 0.003 b 0.028 b 0.031 b

Where a denotes significant at 0.05 level and b denotes significant at 0.01 level.

3.2. Relationship between Temperature Indexes and Large-Scale Circulation Indexes

It is important to establish the most influential large-scale influencing factors of GST,
SAT, and SATD. First, the monthly averaged GST-, SAT-, and SATD-related indexes might
include a 1-year oscillation caused by Earth’s revolution, which would mean coherence
of the monthly GST-, SAT-, and SATD-related indexes with the large-scale indexes on the
1-year timescale. Therefore, the anomaly of the monthly averaged GST-, SAT-, and SATD-
related indexes (base period: 1980–2009) was calculated to remove the 1-year oscillation.
Then, the PASC values between the anomaly of the monthly averaged GST-, SAT-, and
SATD-related indexes and the large-scale indexes were calculated. The large-scale index
that has the highest PASC with the anomaly of the monthly averaged GST-, SAT-, and SATD-
related indexes was considered the most influential large-scale factor. Table 8 presents
the PASC values of the anomaly of the monthly averaged GST-, SAT-, and SATD-related
indexes in SWC. Overall, the AMO is the most influential large-scale factor for the anomaly
of the monthly averaged GST- and SAT-related indexes (Table 8). However, the PDO is
the most influential large-scale factor (PASC = 12.01%) for the anomaly of the monthly
averaged SATDx, whereas the NAO has the highest PASC value (13%) for the anomaly of
the monthly averaged SATDm and SATDn (Table 8). The PASC values of the anomaly of
the monthly averaged GST-, SAT-, and SATD-related indexes for the subareas are shown in
Table S7. Consistent with the most influential large-scale factor of GST and SAT in SWC, the
AMO also makes the greatest contributions to the anomaly of the monthly averaged GST-
and SAT-related indexes in the subareas (Table S7). However, spatial heterogeneity exists in
the most influential large-scale index of the anomaly of the monthly averaged SATD-related
indexes. For example, in HDM and SCB, the AMO makes the greatest contribution to the
anomaly of the monthly averaged SATDx (PASC: 15% and 12%, respectively), whereas the
PDO is the dominant large-scale factor of the anomaly of the monthly averaged SATDx in
YGP (PASC = 6%) (Table S7). The WTC and global coherence of the anomaly of the monthly
averaged GST-, SAT-, and SATD-related indexes in SWC are shown in Figure 8, and main
results are presented in Table 9. Overall, the anomaly of the monthly averaged GST and
related indexes show significant (p ≤ 0.05) coherence with the AMO on a timescale of
approximately 3.7–3.9 years (Figure 8a–f), with phase differences of +11–75◦ indicating
that the AMO is ahead of the GST- and SAT-related indexes by 2–9 months (Table 9).
Meanwhile, on the interdecadal timescale, the anomaly of the monthly averaged SATx
(SATm) exhibits positive (negative) coherence with the AMO on the 10-year timescale,
with a phase difference of +11.3◦ (−7.3◦) indicating that the AMO leads (lags) the anomaly
of the monthly averaged SATx (SATm) by 3.9 (−3.5) months (Table 9). Additionally, the
lag of the PDO and the NAO with the anomaly of the monthly averaged SATDx and
SATDm is 5.5 and 3 years, respectively, on the timescale of 12.4 years, while the lag of
the NAO with the anomaly of the monthly averaged SATDn is 5.5 years on the timescale
of 13.1 years during 1980–2019 (Figure 8g–i and Table 9). From the above, the resonance
between the monthly averaged GST- and SAT-related indexes and the most influential
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large-scale factor is focused more at high frequency (interannual), while the resonance
between the monthly averaged SATD-related indexes and the most influential large-scale
factor is focused more at low frequency (interdecadal) in SWC. The WTC and global
coherence results between the monthly averaged GST-, SAT-, and SATD-related indexes
in the subareas are shown in Figures S6–S8. The most influential large-scale factor on the
anomaly of the monthly averaged GST and SAT in the subareas is consistent with that
in SWC, i.e., the AMO makes the greatest contribution (Table S7). However, the PASC
values of the AMO exhibit spatial heterogeneity. For example, the maximum coherence
between GSTm and the AMO is only 0.9 years in HDM, whereas GSTm shows coherence
of 9.8 years with the AMO in YGP. Tables 10 and S8 summarize the combinations of the
large-scale indexes that optimally explain the variations of GST, SAT, and SATD in SWC
and in the three subareas, respectively. In comparison with individual factors, a 5% increase
occurs in the abnormal monthly averaged GSTn, SATDx, and SATDn when considering
two factors. For the monthly averaged SATDn, the PNA index shows an increase of more
than 15% in comparison with individual factors. However, there is a decrease in the PASC
values when considering combinations of more than two factors. In Table S8, the anomalies
of the monthly averaged GSTx, SATx, and SATDx are all most coherent with individual
factors in the three subareas. Furthermore, GSTm, SATm, and SATDm are all coherent
with individual large-scale factors in SCB and YGP, and the majority of the anomaly of the
averaged GSTn, SATn, and SATDn shows optimum coherence with two large-scale factors
(Table S8).

Figure 8. Wavelet transform and global coherence of anomaly of the monthly averaged (a–c) GST-,
(d–f) SAT-, and (g–i) SATD-related indexes with the highest PASC large-scale index from 1980 to 2019
in Southwest China (Red dotted line in global coherence represents significant at 0.05 level).
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Table 8. Percentage area of significant (p≤ 0.05) coherence in bi-wavelet transform coherence between
the anomaly of the monthly averaged GST-, SAT-, and SATD-related indexes and large-scale indexes
in from 1980 to 2019 in Southwest China.

GSTm GSTx GSTn SATm SATx SATn SATDx SATDn SATDm

AMO 12.03 11.61 5.18 12.31 10.9 12.11 5.25 7.62 6.02
AO 5.81 6.55 3.97 4.77 4.7 4.22 7.19 8.95 8.54
MEI 3.85 4.6 2.57 4.19 3.81 3.89 9.34 8.28 12.37

NAO 3.88 4.32 2.81 3.46 3.77 2.52 11.22 13.7 13.76
PDO 4.34 3.86 4.82 3.51 4.36 3.51 12.01 8.43 9.27
PNA 3.38 4.76 3.77 5.24 5.06 4.64 9.38 5.67 1.58

Entries in bold indicate the large-scale index with the highest PASC.

Table 9. Main results obtained by WTC for strongest relationships between monthly abnormal aver-
aged GST-, SAT- and SATD-related indexes and the most influential large-scale index in Southwest
China from 1980 to 2019.

Interannual Scale Interdecade Scale

The Most Influ
ential Large-
Scale Factor

Coherence
Period
(Year)

Years Phase
Difference (◦)

Leads/Lags
(Month)

Coherence
Period
(Year)

Years Phase
Difference (◦)

Leads/Lags
(Year)

GSTx AMO 3.7 1989–1993 75.9 +9.3
GSTm AMO 3.7 1988–1997 47 +5.8
GSTn AMO 3.9 1991–2001 11.1 +1.4
SATx AMO 3.7 1988–1992 59.2 +7.3 10.4 1980–1985 11.3 +0.32
SATm AMO 3.7 1986–1997 40.6 +5 10.4 1980–1997 −7.3 −0.2
SATn AMO 3.7 1988–2000 23.6 +2.9
SATDx PDO 2.1 2010–2015 35.3 +2.4 12.4 1980–2019 −161.7 −5.5
SATDm NAO 12.4 1980–2019 −86.1 −3
SATDn NAO 13.1 1980–2019 −57.8 −2.1

+ denotes the phase of monthly averaged GST, SAT and SATD-related indexes anomaly lead phase of large-
scale indexes; − denotes the phase of abnormal averaged GST, SAT and SATD-related indexes lag phase of
large-scale indexes.

Table 10. Percentage area of significant coherence (PASC) in multi-wavelet transform coherence
between the anomaly of the monthly averaged GST-, SAT-, and SATD-related indexes and large-scale
indexes from 1980 to 2019 in Southwest China.

Maximum Temperature Mean Temperature Minimum Temperature
Combination PASC (%) Combination PASC (%) Combination PASC (%)

GST

AMO 11.61 AMO 12.03 AMO 5.18
AMO+AO 12.96 AMO+NAO 12.60 AMO+PDO 21.40

AMO+AO+MEI 9.93 AMO+NAO+PNA 12.65 AMO+PDO+NAO 18.68
AMO+AO+MEI+NAO 9.91 AMO+NAO+PNA+AO 11.69 AMO+PDO+NAO+PNA 15.23

SAT

AMO 10.90 AMO 12.31 AMO 12.11
AMO+AO 11.06 AMO+NAO 12.28 AMO+PNA 12.32

AMO+AO+NAO 9.70 AMO+NAO+PNA 11.49 AMO+PNA+NAO 12.33
AMO+AO+NAO+PNA 9.81 AMO+NAO+PNA+AO 10.90 AMO+PNA+NAO+PDO 12.02

SATD

PDO 12.01 NAO 13.76 NAO 13.70
PDO+PNA 17.15 NAO+PDO 16.67 NAO+AMO 22.82

PDO+PNA+NAO 13.42 NAO+PDO+AMO 14.67 NAO+AMO+MEI 14.77
PDO+PNA+NAO+AMO 13.51 NAO+PDO+AMO+AO 14.24 NAO+AMO+MEI+AO 13.66

4. Discussion
4.1. Comparing Different Climatic Changes of GST, SAT, and SATD with Results from
Previous Studies

Using daily data from 368 meteorological stations, we examined the climatic changes
of SAT, GST, and SATD in SWC and the three subareas defined in this study, and the
findings are summarized in Tables 3, S1 and S2. The majority of GST, SAT, and SATD
stations indicate a significant (p ≤ 0.05) upward trend. The warming trend of SAT in SWC
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is consistent with that on the global scale. The annual averaged SATm is 0.029 ◦C/year,
which is lower than the global average annual land temperature change of 0.032 ◦C/year
during 1980–2019 [60]. The variation rates of the annual averaged SATx (0.038 ◦C/year)
and SATn (0.032 ◦C/year) in this study are greater than those of the annual global averaged
SATx and SATn during 1979–2004 [61]. Moreover, the variation rates of the annual averaged
GSTx, GSTm, and GSTn are 0.048, 0.034, and 0.045 ◦C/year, respectively, which are greater
than global variation rates of the annual averaged SATx, SATm, and SATn. Furthermore,
the variation rate of SATD is lower than that of both GST and SAT. On the regional scale, Liu
et al. indicated that GSTx, GSTn, SATx, and SATn all show significant trends of warming
(i.e., 0.062, 0.064, 0.039, and 0.054 ◦C/year, respectively), and further revealed their seasonal
variations over the period 1965–2007 in North China [1]. Fang et al. reported that GSTm
and SATm on the Tibetan Plateau during 1960–2014 showed trends of warming of 0.047
and 0.035 ◦C/year, respectively [25]. It can be seen that the variation rate of GST is greater
than that of SAT, which is consistent with the findings of this study. Except for spring
in China, SATDm indicates a substantial trend of decrease on both annual and seasonal
timescales [2]. In contrast, SATDm in SWC indicates a significant trend of increase on both
annual and seasonal timescales, with the exception of summer (Table 2). This discrepancy
might be attributable to the different numbers of stations used and the different lengths of
study period. The annual averaged SATx, SATm, and SATn exhibit a climate jump in 1997,
as confirmed in Wang et al. [8]. However, the climate jump of GST (except GSTx) lags the
climate jump of SAT, which might reflect a difference between the sensitivity of GST and
SAT to climate change. We also found different periods for each index based on ensemble
empirical mode decomposition, and GST exhibited a shorter period than SAT in terms of
the interannual oscillation mode. It might be that soil temperature generally responds to
forcing by air temperature in complex ways [62]. Moreover, the variance contribution of
IMF2 was found to be far greater than that of the other IMFs in this study, which might be
a reflection of the timescale. The majority of related studies decompose geophysical signals
on the annual timescale. Therefore, their IMF1 is the interannual oscillation mode, not the
intra-annual oscillation mode. However, the contribution of Earth’s rotation (1 year) to
temperature is far greater than that of the lower oscillation (ENSO event: 2–7 years, sunspot
activity: 11 years). Overall, this study revealed only the climatic changes of GST, SAT, and
SATD and their differences; the reasons underlying such differences remain uncertain and
require further study.

4.2. Elevation-Dependent Variation of GST, SAT, and SATD

The geomorphology of SWC is complex, and regional elevation is in the range of
0–6030 m. The meteorological station with the highest elevation is Shiqu Station, located at
4200 m, which means that there is a lack of meteorological stations at the highest elevations.
To overcome this problem, some studies have investigated elevation-dependent warming
using satellite remote sensing data [63–65]. However, the spatial resolution of long-term
gridded data sets (e.g., the ERA5-land product) is generally low, while the temporal res-
olution of fine-scale data sets is generally short (e.g., MODIS). Applications of spatial
interpolation to temperature data observed at meteorological stations have the advantages
of a long timescale and fine spatial resolution, and such techniques have been applied to
study elevation-dependent climate change [66]. However, earlier studies generally interpo-
lated temperature data using ANUSPLINE. To the best of our knowledge, interpolation
using six algorithms (boosted regression tree, neural network, generalized additive model,
multivariate adaptive regression spline, support vector machine, and random forest) has
never before been employed to reveal the spatiotemporal three-dimensional dynamics of
GST, SAT, and SATD. Therefore, we interpolated the observed GST and SAT with elevation,
longitude, and latitude using an ensemble of the six algorithms, which is an approach
that is robust to noisy multivariate data. The result indicates that GST and SAT exhibit
elevation-dependent variation on the annual timescale. The warming gradient of SATm
is 0.012 ◦C/(year·km), which is similar to the warming gradient of 0.014 ◦C/(year·km)
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found on the Tibetan Plateau [67]. In this study, the fastest warming is detected in HDM,
whereas Tao et al. reported that the fastest elevation-dependent climatic warming was
in YGP [66]. This discrepancy might be attributable to different interpolators, different
numbers of stations, and different lengths of study period. An inflection point is found in
the annual averaged GSTm, GSTn, SATm, and SATn at an elevation of approximately 3 km,
after which the rate of variation is enhanced. This finding is similar to results obtained
on the Tibetan Plateau, where the warming rate was found to increase at elevations of
3–4 km [63]. Furthermore, asymmetric variation of SATDx (downward trend) and SATDn
(upward trend) with elevation above 3 km is found. Under warming conditions, snow on
the ground recedes, the surface albedo decreases, and the absorption of solar radiation
by the ground surface increases [68]. This could explain the different variations of the
elevation-dependent gradient of SATDx and SATDn in high-elevation regions. Although
many studies of the physical mechanisms of SAT indicate that elevation-dependent warm-
ing is related to CO2, clouds, snow, and other factors [27,28,38,69], the driving mechanism
of the asymmetric variation of SATDx (downward trend) and SATDn (upward trend) with
elevation remains unknown.

4.3. Potential Linkages between GST, SAT, and SATD with Large-Scale Indexes

Unlike conventional regression that can be used to investigate the correlation between
climatic variables and large-scale indexes in the temporal domain [70], we focused on
the coherence of components that have the same oscillation (i.e., resonance) to further
reveal linkages in the frequency domain. In SWC, we found that the AMO is the dominant
large-scale index involved in the variations of GST and SAT, consistent with the findings
of previous research on the global scale [71,72], and in Europe [73], East Asia [74], and
China [75,76]. Prior research indicated that the positive (negative) phase of the AMO
coincides with relatively warm (cold) temperatures in China [75,77], which might reflect
AMO-related influence on the atmospheric circulation causing temperature changes in the
Eurasian troposphere [78]. Specifically, mid-latitude westerly anomalies and propagation
of Rossby waves related to the AMO might represent two channels linking sea surface
temperature anomalies in the North Atlantic and temperature variability over East Asia [79].
Different from GST and SAT, for which the AMO is the dominant large-scale index, the
variation of SATD is closely correlated with the PDO, NAO, and ENSO. This finding is
consistent with Shi and Chen [2], who found that the interdecadal increasing trend of
SATDs benefits from the PDO. Overall, the reason for the different impacts of the large-
scale indexes on GST, SAT, and SATD might be that the AMO is a factor that leads to
direct increase/decrease in temperature, whereas the PDO, NAO, and ENSO are factors
that influence other environmental factors such as snow depth, precipitation, and wind
that impart imbalance on SAT and GST, thereby causing SATD variation indirectly. In
MWC, the PASC exhibits a significant increase when adding the PDO, MEI, and NAO to
the AMO, suggesting that large-scale circulations driven by Pacific Ocean–atmospheric
coupling processes (e.g., ENSO and the PDO) could be affected to some extent by North
Atlantic sea surface temperature anomalies [80–82]. However, the PASC values show a
decreasing trend when the number of factors is greater than four, consistent with the results
reported by both Hu and Si (2016) and Su et al. (2019) [56,57]. This is probably because the
number of factors is correlated negatively with some large-scale indexes and is correlated
positively with SAT, GST, and SATD [83].

4.4. Uncertainties and Limitations

In this study, we interpolated GST and SAT with elevation, longitude, and latitude
using six algorithms to study the elevation-dependent variation, and we used WTC to
investigate the correlations between GST, SAT, and the large-scale circulation indexes;
however, some uncertainties remain. We considered only the influence of elevation, latitude,
and longitude on temperature; therefore, the effects of geomorphology, slope direction,
wind direction, wind speed, airflow, and other factors should be considered in future
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studies. Furthermore, although WTC can be used to detect correlation between two
time series in the frequency domain, if one of the time series has varying skewness, the
correlation in the temporal domain would be weak [84]. Many geophysical time series are
nonlinear [84–86] and exhibit skewness and kurtosis; thus, it is important to determine
whether such characteristics also exist in GST, SAT, and SATD time series. Moreover, owing
to large errors in GST before 1980, we selected the higher quality GST data of 1980–2019
and revealed the WTC between GST, SAT, SATD, and the large-scale indexes for the period
1980–2019. However, the AMO exhibits a 60 years low-frequency oscillation [87], which
means that longer time series of GST and SAT are needed to investigate the coherence on a
timescale longer than 20 years. Additionally, GST, SAT, and SATD are closely correlated
with environmental factors such as precipitation [2,24,32], wind [33], snow depth [34–36],
sunshine duration [37], and soil moisture [38]; therefore, it is important to ascertain whether
their oscillation exhibits coherence with such environmental factors.

5. Conclusions

The main objectives of this study were to elucidate the three-dimensional variation of
GST, SAT, and SATD in SWC and to detect the differences in the variation characteristics of
GST, SAT, and SATD under the impact of global warming using daily SAT and GST data
observed at 368 meteorological stations in SWC during 1980–2019. Moreover, the associa-
tions between nine GST-, SAT-, and SATD-related indexes and six large-scale circulation
indexes were examined. The main conclusions derived are as follows.

1. Temporally, the variation of GST-related indexes is consistent with the variation of
SAT on annual and seasonal timescales, except for GSTx and SATx in SWC. Most
meteorological stations in SWC exhibit significant trends of increase in the annual
and seasonal averaged GSTm, GSTn, SATx, SATm, and SATn during 1980–2019. In
particular, the warming rate of the annual and seasonal averaged GST and SAT is
fastest in spring (except in HDM). The variations of the annual and seasonal GST-,
SAT-, and SATD-related indexes in the three subareas are similar to those in SWC.
The period of the monthly averaged GST, SAT, and SATD is similar in IMF1–3, but
different in IMF 4–6.

2. Spatially, on annual and seasonal timescales, the variation rate of GSTm and GSTn
is consistent with that of SATm and SATn, whereas the variation rate of GSTx is
the opposite to that of SATm in high-elevation regions (mainly northern HDM) in
SWC. Furthermore, the center of warming of the annual and seasonal GST-, SAT-,
and SATD-related indexes is found in the hot dry valley of the Red River (except for
SATDx in winter). The variation rate of the annual averaged GSTx and SATDx is
downward with elevation, while that of the annual averaged GST, SAT, and SATD is
upward with elevation. The elevation variation gradient of the annual averaged GST
and SAT amplifies the annual averaged SATD, particularly in HDM.

3. The AMO is the large-scale circulation factor with most influence on the anomaly of
the monthly averaged GST- and SAT-related indexes on the timescale of 3.7–3.9 years,
with a phase difference of +11–75◦, indicating that the AMO lags the anomaly of the
monthly GST- and SAT-related indexes by 2–9 months in SWC. Meanwhile, the PDO
and the NAO lead the anomaly of the monthly averaged SATD-related indexes by
2–5 years (with phase difference −57◦ to −167◦) on the timescale of 12 years, and the
most influential large-scale factor in the three subareas exhibits spatial heterogeneity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13071031/s1, Figure S1: Box-and-whisker plots of trends in
seasonal averaged GST-, SAT-, and SATD-related indexes in Southwest China (1980–2019).
Figures S2–S5: Similar to Figure 6, but for seasonal timescale. Figures S6–S8: Similar to Figure 8,
but for subareas. Tables S1 and S2: Variation rate and climate jump of annual/seasonal averaged
GST, SAT and SATD related indexes in three subareas. Table S3: Similar to Table 4, but for subareas.
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Tables S4 and S5: Similar to Tables 5 and 6, but for subareas. Table S6: Similar to Table 7, but for
subareas. Tables S7 and S8: The PASC of bi-wavelet and multiwavelet transform in subareas.
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