Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia
Abstract
:1. Introduction
2. Operational Design and Methods
2.1. Standard Operating Procedure (SOP)
2.2. Operation Period and Material Used
3. Cloud Seeding Operation Results
3.1. Rainfall Amount and Spatial Rainfall Results
3.2. The Larona Basin Hydrological Measurement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Date | Flare Usage | |||||
---|---|---|---|---|---|---|---|
Himalaya | Salonsa | Asuli | Petea | Cinta Hills | Total | ||
1 | 31 December 2019 | 2 | 2 | ||||
2 | 1 January 2020 | 2 | 2 | ||||
3 | 2 January 2020 | 1 | 1 | ||||
4 | 3 January 2020 | 1 | 1 | 2 | |||
5 | 4 January 2020 | 2 | 2 | 4 | |||
6 | 5 January 2020 | 1 | 1 | 2 | |||
7 | 6 January 2020 | 1 | 1 | ||||
8 | 7 January 2020 | 2 | 2 | ||||
9 | 5 February 2020 | 2 | 2 | ||||
10 | 6 February 2020 | - | |||||
11 | 7 February 2020 | 2 | 2 | ||||
12 | 8 February 2020 | 1 | 1 | ||||
13 | 9 February 2020 | 3 | 3 | ||||
14 | 10 February 2020 | 2 | 2 | ||||
15 | 11 February 2020 | - | |||||
16 | 12 February 2020 | 2 | 2 | ||||
17 | 13 February 2020 | 2 | 2 | ||||
18 | 14 February 2020 | 3 | 3 | ||||
19 | 15 February 2020 | 2 | 2 | ||||
20 | 16 February 2020 | 2 | 2 | ||||
21 | 17 February 2020 | 2 | 2 | ||||
22 | 18 February 2020 | 1 | 1 | ||||
23 | 19 February 2020 | 2 | 2 | ||||
24 | 20 February 2020 | 2 | 2 | ||||
25 | 21 February 2020 | 2 | 2 | ||||
26 | 22 February 2020 | - | |||||
27 | 23 February 2020 | - | |||||
28 | 24 February 2020 | 1 | 1 | 1 | 3 | ||
29 | 25 February 2020 | 2 | 2 | 4 | |||
30 | 26 February 2020 | 2 | 1 | 2 | 5 | ||
31 | 27 February 2020 | 1 | 3 | 1 | 5 | ||
32 | 28 February 2020 | ||||||
33 | 29 February 2020 | 1 | 1 | 1 | 3 | ||
34 | 1 March 2020 | 1 | 1 | 1 | 3 | ||
35 | 2 March 2020 | 1 | 3 | 4 | |||
36 | 3 March 2020 | 1 | 1 | 2 | 4 | ||
37 | 4 March 2020 | 1 | 1 | 2 | |||
38 | 5 March 2020 | 1 | 1 | 1 | 3 | ||
39 | 6 March 2020 | - | |||||
40 | 7 March 2020 | 1 | 1 | 2 | |||
41 | 8 March 2020 | 1 | 1 | ||||
42 | 9 March 2020 | 1 | 1 | ||||
43 | 10 March 2020 | - | |||||
44 | 11 March 2020 | 1 | 1 | ||||
45 | 12 March 2020 | 1 | 1 | 2 | |||
46 | 13 March 2020 | 1 | 1 | 2 | |||
47 | 14 March 2020 | 1 | 1 | ||||
48 | 15 March 2020 | - | |||||
49 | 16 March 2020 | 1 | 2 | 3 | |||
50 | 17 March 2020 | - | |||||
51 | 18 March 2020 | 1 | 1 | ||||
52 | 19 March 2020 | 1 | 1 | ||||
53 | 20 March 2020 | 1 | 1 | 2 | |||
54 | 21 March 2020 | 1 | 1 | 1 | 3 | ||
55 | 22 March 2020 | 1 | 1 | ||||
56 | 23 March 2020 | 1 | 1 | 1 | 3 | ||
57 | 24 March 2020 | - | |||||
58 | 25 March 2020 | 2 | 1 | 2 | 5 | ||
59 | 26 March 2020 | - | |||||
60 | 27 March 2020 | 1 | 2 | 3 | |||
61 | 28 March 2020 | 1 | 1 | 1 | 3 | ||
62 | 29 March 2020 | 1 | 1 | ||||
63 | 30 March 2020 | 1 | 1 | 1 | 3 | ||
64 | 31 March 2020 | 1 | 1 | 2 | |||
65 | 1 April 2020 | 1 | 1 | 2 | |||
66 | 2 April 2020 | 1 | 1 | 2 | |||
67 | 3 April 2020 | 1 | 1 | 2 | |||
68 | 4 April 2020 | 1 | 1 | 2 | |||
69 | 5 April 2020 | 1 | 2 | 3 | |||
70 | 6 April 2020 | 1 | 1 | 2 | |||
71 | 7 April 2020 | 1 | 1 | ||||
72 | 8 April 2020 | 1 | 1 | ||||
73 | 9 April 2020 | 2 | 2 | ||||
74 | 10 April 2020 | 2 | 1 | 3 | |||
75 | 11 April 2020 | 1 | 1 | ||||
76 | 12 April 2020 | - | |||||
77 | 13 April 2020 | - | |||||
78 | 14 April 2020 | 1 | 2 | 3 | |||
79 | 15 April 2020 | 1 | 1 | 2 | |||
80 | 16 April 2020 | 1 | 1 | ||||
81 | 17 April 2020 | - | |||||
82 | 18 April 2020 | - | |||||
83 | 19 April 2020 | 2 | 1 | 3 | |||
84 | 20 April 2020 | - | |||||
85 | 21 April 2020 | 2 | 2 | ||||
86 | 22 April 2020 | 2 | 1 | 3 | |||
87 | 23 April 2020 | 3 | 3 | ||||
88 | 24 April 2020 | 1 | 1 | 2 | |||
89 | 25 April 2020 | - | - | ||||
90 | 26 April 2020 | - | |||||
91 | 27 April 2020 | 2 | 2 | ||||
92 | 28 April 2020 | - |
No. | Sample Locations | Date Taken | pH | Elect. Conductivity (μS/cm) | Li (ppm) | Al | Cl− | K | Na | Mg |
---|---|---|---|---|---|---|---|---|---|---|
(dd/mm/yy) | (ppm) | (ppm) | (ppm) | (ppm) | (ppm) | |||||
1. | Pontada | 5 March 2020 | 4.35 | 13.66 | −0.00026 | 0.03097 | <0.1 | 0.02721 | 0.499 | 1.046 |
2. | Sumasang | 24 February 2020 | 5.52 | 13.02 | 0.00015 | 0.02904 | 0.4 | 0.13736 | 0.431 | 1.261 |
3. | Wawondula | 27 February 2020 | 4.13 | 9.34 | 0.00005 | 0.00005 | <0.1 | 0.23043 | 0.73 | 0.708 |
4. | Asuli | 24 February 2020 | 3.66 | 31.7 | 0.00008 | 0.04207 | <0.1 | 0.06537 | 0.504 | 0.964 |
5. | Wasuponda | 24 February 2020 | 5.02 | 20.01 | −0.00016 | 0.05228 | <0.1 | 0.13225 | 0.8 | 1.641 |
6. | Nuha | 27 February 2020 | 4.38 | 20.2 | −0.00038 | 0.0263 | <0.1 | 0.02984 | 0.703 | <0.001 |
7. | Malili | 5 March 2020 | 4.88 | 16.16 | −0.00019 | 0.04606 | <0.1 | −0.03147 | 0.498 | 0.476 |
8. | Lake Matano | 18 February 2020 | 6.96 | 182.5 | 0,00038 | 0.01321 | <0.1 | 0.232 | 1.038 | 8.856 |
9. | Lake Towuti | 26 February 2020 | 6.55 | 147.3 | 0,00020 | 0.05588 | <0.1 | 0.176 | 1.022 | 9.405 |
References
- Liu, Y.; Luo, R.; Zhu, Q.; Hua, S.; Wang, B. Cloud ability to produce precipitation over arid and semiarid regions of Central and East Asia. Int. J. Climatol. 2020, 40, 1824–1837. [Google Scholar] [CrossRef]
- Zhao, P.; Xiao, H.; Liu, J.; Zhou, Y. Precipitation efficiency of cloud and its influencing factors over the Tibetan plateau. Int. J. Climatol. 2022, 42, 416–434. [Google Scholar] [CrossRef]
- Abshaev, A.M.; Flossmann, A.; Siems, S.T.; Prabhakaran, T.; Yao, Z.; Tessendorf, S. Rain Enhancement through Cloud Seeding. In Unconventional Water Resources; Springer: Cham, Switzerland, 2022; pp. 21–49. [Google Scholar]
- Rosenfeld, D.; Axisa, D.; Woodley, W.L.; Lahav, R. A quest for effective hygroscopic cloud seeding. J. Appl. Meteorol. Climatol. 2010, 49, 1548–1562. [Google Scholar] [CrossRef]
- Drofa, A.S.; Ivanov, V.N.; Rosenfeld, D.; Shilin, A.G. Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds. Atmos. Chem. Phys. 2010, 10, 8011–8023. [Google Scholar] [CrossRef]
- Drofa, A.S.; Eran’kov, V.G.; Ivanov, V.N.; Shilin, A.G.; Iskevich, G.F. Experimental investigations of the effect of cloud-medium modification by salt powders. Izvestiya Atmos. Ocean. Phys. 2013, 49, 298–306. [Google Scholar] [CrossRef]
- Jung, E.; Albrecht, B.A.; Jonsson, H.H.; Chen, Y.C.; Seinfeld, J.H.; Sorooshian, A.; Metcalf, A.R.; Song, S.; Fang, M.; Russell, L.M. Precipitation effects of giant cloud condensation nuclei artificially introduced into stratocumulus clouds. Atmos. Chem. Phys. 2015, 15, 5645–5658. [Google Scholar] [CrossRef] [Green Version]
- D’albe, E.F.; Lateef, A.M.A.; Rasool, S.I.; Zaidi, I.H. The cloud-seeding trials in the central Punjab, July-September 1954. Q. J. R. Meteorol. Soc. 1955, 81, 574–581. [Google Scholar] [CrossRef]
- Biswas, K.R.; Kapoor, R.K.; Kanuga, K.K.; Ramana Murty, B.V. Cloud seeding experiment using common salt. J. Appl. Meteorol. Climatol. 1967, 6, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Murty, B.V.R.; KR, B. Weather modification in India. J. Meteorol. Soc. Jpn. 1968, 46, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Pillai, A.G.; Reddy, R.S.; Vijayakumar, R.; Kapoor, R.K.; Murty, A.R.; Selvam, A.M.; Murty, R.R. Ground-based Salt Seeding in Tamil Nadu State, South India, 1973–1977. J. Weather Modif. 1981, 13, 177–181. [Google Scholar]
- Cotton, W.R. Modification of precipitation from warm clouds—A review. Bull. Am. Meteorol. Soc. 1982, 63, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Bruintjes, R.T. A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Am. Meteorol. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef] [Green Version]
- Silverman, B.A. A critical assessment of hygroscopic seeding of convective clouds for rainfall enhancement. Bull. Am. Meteorol. Soc. 2003, 84, 1219–1230. [Google Scholar] [CrossRef] [Green Version]
- Flossmann, A.I.; Manton, M.J.; Abshaev, A.; Bruintjet, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Peer Review Report on Global Precipitation Enhancement Activities. Doctoral Dissertation, WMO, Geneva, Switzerland, 2018. [Google Scholar]
- Mordy, W. Computations of the growth by condensation of a population of cloud droplets. Tellus 1959, 11, 16–44. [Google Scholar] [CrossRef] [Green Version]
- Tessendorf, S.A.; Bruintjes, R.T.; Weeks, C.; Wilson, J.W.; Knight, C.A.; Roberts, R.D.; Peter, J.R.; Collis, S.; Buseck, P.R.; Freney, E.; et al. The Queensland cloud seeding research program. Bull. Am. Meteorol. Soc. 2012, 93, 75–90. [Google Scholar] [CrossRef]
- Jensen, J.B.; Nugent, A.D. Condensational growth of drops formed on giant sea-salt aerosol particles. J. Atmos. Sci. 2017, 74, 679–697. [Google Scholar] [CrossRef]
- Chen, S.; Xue, L.; Yau, M.K. Impact of aerosols and turbulence on cloud droplet growth: An in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach. Atmos. Chem. Phys. 2020, 20, 10111–10124. [Google Scholar] [CrossRef]
- Chen, S.; Xue, L.; Yau, M.K. Hygroscopic Seeding Effects of Giant Aerosol Particles Simulated by the Lagrangian-Particle-Based Direct Numerical Simulation. Geophys. Res. Lett. 2021, 48, e2021GL094621. [Google Scholar] [CrossRef]
- Research Applications Laboratory; National Center for Atmospheric Research (NCAR). Feasibility Study for the Augmentation of Rain in Sulawesi, Final Report to INCO; Weather Modification Inc.: Fargo, ND, USA, 2005. [Google Scholar]
- Prasetio, A.; Widjiantoro, B.L.; Nasution, A.M. Overview of ground-based generator towers as cloud seeding facilities to optimize water resources in the Larona Basin. MATEC Web Conf.-EDP Sci. 2019, 276, 06025. [Google Scholar] [CrossRef] [Green Version]
- Purwadi, P.; Seto, T.H. Desain Konseptual Ground Based Generator (GBG) Otomatis dan konsep operasional berbasis wireless sensor network (WSN). JSTMC 2014, 15, 9–14. (In Bahasa) [Google Scholar] [CrossRef] [Green Version]
- Agency for the Assessement and Application of Technology. CoSAT 1000: Cloud Seeding Agent Tube; Internal Report; Agency for the Assessement and Application of Technology: Jakarta, Indonesia, 2020. [Google Scholar]
- Tao, T. Local Inflow Calculator for Reservoirs. Can. Water Resour. J. 1999, 24, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Meride, Y.; Ayenew, B. Drinking water quality assessment and its effects on residents health in Wondo genet campus, Ethiopia. Env. Syst Res 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda. Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 9 May 2022).
- WHO. Trace Elements in Human Nutrition and Health. Available online: http://apps.who.int/iris/handle/10665/37931 (accessed on 9 May 2020).
- Indonesia Ministry of Health. Available online: https://www.kemkes.go.id/index.php?act=regulation (accessed on 9 May 2020).
No. | Tower Name | Tower Coordinates | Tower Height (m.a.s.l.) |
---|---|---|---|
1. | Salonsa | 121.33° E, 2.51° S | 476 |
2. | Petea | 121.48° E, 2.51° E | 500 |
3. | Himalaya Hill | 121.39° E, 2.56° S | 635 |
4. | Asuli Hill | 121.3° E, 2.60° S | 773 |
5. | Cinta Hill | 121.49° E, 2.51° S | 804 |
No. | Tower Name | Total Flare Usage per Tower | Total Days of Flare Usage per Tower | Average Daily Flare Usage per Tower |
---|---|---|---|---|
1. | Salonsa | 84 | 57 | 2 |
2. | Petea | 0 | 0 | 0 |
3. | Himalaya Hill | 14 | 12 | 1 |
4. | Asuli Hill | 10 | 10 | 1 |
5. | Cinta Hill | 55 | 42 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renggono, F.; Kudsy, M.; Adhitya, K.; Purwadi, P.; Belgaman, H.A.; Dewi, S.; Syahdiza, R.; Mulyana, E.; Aldrian, E.; Arifian, J. Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia. Atmosphere 2022, 13, 968. https://doi.org/10.3390/atmos13060968
Renggono F, Kudsy M, Adhitya K, Purwadi P, Belgaman HA, Dewi S, Syahdiza R, Mulyana E, Aldrian E, Arifian J. Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia. Atmosphere. 2022; 13(6):968. https://doi.org/10.3390/atmos13060968
Chicago/Turabian StyleRenggono, Findy, Mahally Kudsy, Krisna Adhitya, Purwadi Purwadi, Halda Aditya Belgaman, Saraswati Dewi, Rahmawati Syahdiza, Erwin Mulyana, Edvin Aldrian, and Jon Arifian. 2022. "Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia" Atmosphere 13, no. 6: 968. https://doi.org/10.3390/atmos13060968
APA StyleRenggono, F., Kudsy, M., Adhitya, K., Purwadi, P., Belgaman, H. A., Dewi, S., Syahdiza, R., Mulyana, E., Aldrian, E., & Arifian, J. (2022). Hygroscopic Ground-Based Generator Cloud Seeding Design; A Case Study from the 2020 Weather Modification in Larona Basin Indonesia. Atmosphere, 13(6), 968. https://doi.org/10.3390/atmos13060968