The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. The Panel-Data Model
3. Results
3.1. Statistical Characteristics
3.1.1. PM2.5 Concentrations
3.1.2. Statistical Characteristics of Urban Landscape Pattern
3.2. Estimation Results for Different Panel Models
4. Discussion
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, A.J.; Anderson, H.R.; Ostro, B.; Pandey, K.D.; Krzyzanowski, M.; Kunzli, N.; Gutschmidt, K.; Pope, A.; Romieu, I.; Samet, J.M.; et al. The Global Burden of Disease due to Outdoor Air Pollution. J. Toxicol. Environ. Health A 2005, 68, 1301–1307. [Google Scholar] [CrossRef]
- Guo, Y.; Jia, Y.; Pan, X.; Liu, L.Q.; Wichmann, H.E. The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Sci. Total Environ. 2009, 407, 4826–4830. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.S.; Wang, S.J.; Hu, J.C. Identifying the socioeconomic determinants of population exposure to particulate matter (PM2.5) in China using geographically weighted regression modeling. Environ. Pollut. 2018, 241, 494–503. [Google Scholar] [CrossRef]
- Shi, K.F.; Wang, H.; Yang, Q.Y.; Wang, L.; Sunl, X.F.; Li, Y.Q. Exploring the relationships between urban forms and fine particulate (PM2.5) concentration in China: A multi-perspective study. J. Clean Prod. 2019, 231, 990–1004. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Z.; Ou, W.X.; Guo, J.; Pueppke, S.G. How does urban form influence PM2.5 concentrations: Insights from 350 different-sized cities in the rapidly urbanizing Yangtze River Delta region of China, 1998-2015. Cities 2020, 98, 102581. [Google Scholar] [CrossRef]
- Feng, Q.; Gauthier, P. Untangling Urban Sprawl and Climate Change: A Review of the Literature on Physical Planning and Transportation Drivers. Atmosphere 2021, 12, 547. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Xu, C.; Jiang, W.Y.; Yue, W.C.; Rong, Q.Q.; Gu, Z.H.; Su, M.R. Urban compactness and patch complexity influence PM2.5 concentrations in contrasting ways: Evidence from the Guangdong-Hong Kong-Macao Greater Bay Area of China. Ecol Indic. 2021, 133, 108407. [Google Scholar] [CrossRef]
- Aguilera, A.; Bautista-Hernandez, D.; Bautista, F.; Goguitchaichvili, A.; Cejudo, R. Is the Urban Form a Driver of Heavy Metal Pollution in Road Dust? Evidence from Mexico City. Atmosphere 2021, 12, 266. [Google Scholar] [CrossRef]
- Zhao, X.L.; Zhou, W.Q.; Wu, T.; Han, L.J. The impacts of urban structure on PM2.5 pollution depend on city size and location. Environ. Pollut. 2022, 292, 118302. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 7521, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, M.A.; Douglas, S.; Hennigan, C.J. Effect of the urban heat island on aerosol pH. Environ. Sci. Technol. 2017, 22, 3095–13103. [Google Scholar] [CrossRef]
- Larkin, A.; van Donkelaar, A.; Geddes, J.A.; Martin, R.V.; Hystad, P. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ. Sci. Technol. 2016, 17, 9142–9149. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.; Li, J.; Wadood, B. Analysis of Urban Expansion and its Impacts on Land Surface Temperature and Vegetation Using RS and GIS, A Case Study in Xi’an City, China. Earth Syst. Environ. 2020, 4, 583–597. [Google Scholar] [CrossRef]
- Sheng, Q.Q.; Zhang, Y.L.; Zhu, Z.L.; Li, W.Z.; Xu, J.Y.; Tang, R. An experimental study to quantify road greenbelts and their association with PM2.5 concentration along city main roads in Nanjing, China. Sci. Total Environ. 2019, 667, 710–717. [Google Scholar] [CrossRef]
- Deng, S.X.; Ma, J.; Zhang, L.L.; Jia, Z.K.; Ma, L.Y. Microclimate simulation and model optimization of the effect of roadway green space on atmospheric particulate matter. Environ. Pollut. 2019, 246, 932–944. [Google Scholar] [CrossRef]
- Forman, R.; Godron, M. Landscape Ecology; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Wang, S.J.; Wang, J.Y.; Fang, C.L.; Li, S.J. Estimating the impacts of urban form on CO2 emission efficiency in the Pearl River Delta, China. Cities 2019, 85, 117–129. [Google Scholar] [CrossRef]
- Clark, L.P.; Millet, D.B.; Marshall, J.D. Air Quality and Urban Form in U.S. Urban Areas: Evidence from Regulatory Monitors. Environ. Sci. Technol. 2011, 45, 7028–7035. [Google Scholar] [CrossRef]
- Bereitschaft, B.; Debbage, K. Urban form, air pollution, and CO2 emissions in large U.S. metropolitan areas. Prof. Geogr. 2013, 65, 612–635. [Google Scholar] [CrossRef]
- Liu, Y.P.; Wu, J.G.; Yu, D.Y.; Ma, Q. The relationship between urban form and air pollution depends on seasonality and city size. Environ. Sci. Pollut. Res. 2018, 25, 15554–15567. [Google Scholar] [CrossRef]
- Su, W.; Lai, X.Y.; Lai, S.N.; Gu, X.R.; Zhang, Z.J.; Zhang, S.J.; Huang, G.X.; Liu, Y.Q. Spatiotemporal variations of atmospheric PM2.5 and PM10 in Nanchang and its correlation with landscape pattern. Acta Sci. Circumstantiate 2017, 7, 2431–2439. [Google Scholar]
- Lu, D.B.; Mao, W.L.; Yang, D.Y.; Zhao, J.N.; Xu, J.H. Effects of land use and landscape pattern on PM2.5 in Yangtze River Delta, China. Atmos. Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Chen, Y.M.; Li, X.; Zheng, Y.; Guan, Y.Y.; Liu, X.P. Estimating the relationship between urban forms and energy consumption: A case study in the Pearl River Delta, 2005–2008. Landsc. Urban Plan. 2011, 102, 33–42. [Google Scholar] [CrossRef]
- Xu, S.C.; Zhang, W.W.; Li, Q.B.; Zhao, B.; Wang, S.X.; Long, R.Y. Decomposition analysis of the factors that influence energy related air pollutant emission changes in China Using the SDA Method. Sustainability 2017, 9, 1742. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Song, Y.; Huang, Y.P.; Hong, S.J.; Huang, L.J. Exploring the Association between Urban Form and Air Quality in China. J. Plan. Educ. Res. 2018, 38, 413–426. [Google Scholar] [CrossRef]
- Martins, H. Urban compaction or dispersion? An air quality modelling study. Atmos. Environ. 2012, 54, 60–72. [Google Scholar] [CrossRef]
- Lu, C.; Liu, Y. Effects of China’s urban form on urban air quality. Urban Stud. 2016, 12, 2607–2623. [Google Scholar] [CrossRef]
- Fang, C.L.; Wang, S.J.; Li, G.D. Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities. Appl. Energy 2015, 158, 519–531. [Google Scholar] [CrossRef]
- Van, D.A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar]
- Zhang, Z.; Zhang, M.; Bilal, M.; Su, B.; Zhang, C.; Guo, L. Comparison of MODIS- and CALIPSO-Derived Temporal Aerosol Optical Depth over Yellow River Basin (China) from 2007 to 2015. Earth Syst. Environ. 2020, 4, 535–550. [Google Scholar] [CrossRef]
- Huang, J.; Lu, X.X.; Sellers, J.M. A global comparative analysis of urban form: Applying spatial metrics and remote sensing. Landsc. Urban Plan. 2007, 82, 184–197. [Google Scholar] [CrossRef]
- Su, S.L.; Xiao, R.; Jiang, Z.L.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Luck, M.; Wu, J. A gradient analysis of urban landscape pattern: A case study from the Phoenix metropolitan region, Arizona, USA. Landsc. Ecol. 2002, 17, 327–339. [Google Scholar] [CrossRef]
- Tv, R.; Aithal, B.H.; Sanna, D.D. Insights to urban dynamics through landscape spatial pattern analysis. Int. J. Appl. Earth Obs. 2012, 18, 329–343. [Google Scholar] [CrossRef]
- Li, S.J.; Zhou, C.S.; Wang, S.J.; Hu, J.C. Dose urban landscape pattern affect CO2 emission efficiency? Empirical evidence from megacities in China. J. Clean. Prod. 2018, 203, 164–178. [Google Scholar] [CrossRef]
- Wu, J.G.; Jenerette, G.D.; Buyantuyev, A.; Redman, C.L. Quantifying spatiotemporal patterns of urbanization: The case of the two fastest growing metropolitan regions in the United States. Ecol. Complex. 2011, 1, 1–8. [Google Scholar] [CrossRef]
- Liu, X.P.; Ou, J.P.; Chen, Y.M.; Wang, S.J.; Li, X.; Jiao, L.M.; Liu, Y.L. Scenario simulation of urban energy-related CO2 emissions by coupling the socioeconomic factors and spatial structures. Appl. Energy 2018, 238, 1163–1178. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Bresson, G.; Pirotte, A. Fixed effects, random effects or Hausman–Taylor? Econ. Lett. 2003, 79, 361–369. [Google Scholar] [CrossRef]
- Hua, Y.; Cheng, Z.; Wang, S.X.; Jiang, J.K.; Chen, D.; Cai, S.Y.; Fu, X.; Fu, Q.Y.; Chen, C.H.; Xu, B.Y.; et al. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China. Atmos. Environ. 2015, 123, 380–391. [Google Scholar] [CrossRef]
- Cao, X.S.; Yang, W.Y.; Huang, X.Y. Accessibility and CO2 emissions from travel of smart transportation: Theory and empirical studies. Prog. Geog. 2015, 4, 418–429. [Google Scholar]
- Xie, Y.; Yu, M.; Bai, Y.; Xing, X. Ecological analysis of an emerging urban landscape pattern—Desakota: A case study in Suzhou China. Landsc. Ecol. 2006, 8, 1297–1309. [Google Scholar] [CrossRef]
- Liu, X.; Sweeney, J. Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dubin Region. Energy Policy 2012, 46, 359–369. [Google Scholar] [CrossRef]
- de Andrade, C.E.S.; D’Agosto, M.D. Energy use and carbon dioxide emissions assessment in the lifecycle of passenger rail system: The case of the Rio de Janeiro Metro. J. Clean. Prod. 2016, 126, 526–536. [Google Scholar] [CrossRef]
- Ma, J.; Liu, Z.; Chai, Y. The impact of urban form on CO2 emission from work and non-work trips: The case of Beijing, China. Habitat Int. 2015, 47, 1–10. [Google Scholar] [CrossRef]
- Makido, Y.; Dhakal, S.; Yamagata, Y. Relationship between urban form and CO2 emissions: Evidence from fifty Japanese cities. Urban Clim. 2012, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Krizek, K.J. Neighborhood services, trip purpose, and tour-based travel. Transportation 2003, 30, 387–410. [Google Scholar] [CrossRef]
- Khattak, A.J.; Rodriguez, D. Travel behavior in neo-traditional neighborhood developments: A case study in USA. Transport. Res. A 2005, 39, 481–500. [Google Scholar] [CrossRef]
- Wilson, B. Urban form and residential electricity consumption: Evidence from Illinois, USA. Landsc. Urban Plan. 2013, 115, 62–71. [Google Scholar] [CrossRef]
- Ye, H.; He, X.; Song, Y.; Li, X.; Zhang, G.; Lin, T.; Xiao, L. A sustainable urban form: The challenges of compactness from the viewpoint of energy consumption and carbon emission. Energy Build. 2015, 93, 90–98. [Google Scholar] [CrossRef]
- Song, Y.; Zhong, S.P.; Zhang, Z.T.; Chen, Y.P.; Rodriguez, D.; Morton, B. The relationship between urban spatial structure and PM2.5: Lessons learnt from a modeling project on vehicle emissions in Charlotte, USA. City Plan. Rev. 2014, 5, 9–14. [Google Scholar]
- Dieleman, F.; Dijst, M.; Burghouwt, G. Urban form and travel behaviour: Micro-level household attributes and residential context. Urban Stud. 2002, 3, 507–527. [Google Scholar] [CrossRef]
- Ewing, R.; Bartholomew, K.; Winkelman, S.; Walters, J.; Chen, D. Growing Cooler: The Evidence on Urban Development and Climate Change; Urban Land Institute: Chicago, IL, USA, 2007. [Google Scholar]
Category | Landscape Metric | Equation | Description |
---|---|---|---|
Urban extension | Total (class) area (TA) | αij = area (m2) of patch (ij) (Range > TA > 0) | |
Urban shape complexity | Mean perimeter/area ratio (PARA_MN) | Pij = perimeter (m) of patch (ij) αij = area (m2) of patch (ij) mn = the number of all landscape patch types (range: PARA_MN > 0) | |
Landscape shape index (LSI) | Eik* = total length (m) of edge in landscape between class i and k, TA = total landscape area (m2) (range: LSI ≥ 1) | ||
Urban compactness | Largest patch index (LPI) | αij = area (m2) of patch (ij) TA = total landscape area (m2) (range: 0 < LPI ≤ 100) | |
Landscape division index (DIVISION) | αij* = areas (m2) of patch (ij), TA = total landscape area (m2) (range: 0 ≤ DIVISION < 1) |
Year | Mean μg/m3 | Median μg/m3 | Max μg/m3 | Min μg/m3 | Std. Dev. μg/m3 | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
2000 | 27.52 | 25.02 | 67.40 | 2.34 | 13.50 | 0.64 | 2.87 |
2005 | 38.43 | 37.43 | 77.32 | 3.33 | 16.17 | 0.16 | 2.34 |
2010 | 40.60 | 38.00 | 81.47 | 3.34 | 17.80 | 0.28 | 2.37 |
2015 | 39.51 | 34.42 | 84.99 | 2.94 | 18.75 | 0.40 | 2.17 |
Year | Mean ha | Median ha | Max ha | Min ha | Std. Dev. ha | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
2000 | 18,292.13 | 13,000 | 154,900 | 400 | 19,720.23 | 3.03 | 15.86 |
2005 | 21,451.60 | 14,600 | 181,400 | 400 | 23,639.75 | 2.88 | 14.46 |
2010 | 23,656.85 | 15,700 | 196,300 | 400 | 25,991.40 | 2.72 | 13.03 |
2015 | 29,597.96 | 20,500 | 203,100 | 800 | 28,553.96 | 2.42 | 10.99 |
TA | LPI | PARA | LSI | DIVISION | |
---|---|---|---|---|---|
TA | 1 | ||||
LPI | −0.069 ** | 1 | |||
PARA | 0.021 | −0.129 *** | 1 | ||
LSI | 0.380 *** | 0.400 | −0.401 *** | 1 | |
DIVISION | 0.089 | −0.410 *** | 0.116 *** | −0.321 *** | 1 |
Chi-Sq statistic | p-Values | |
---|---|---|
The whole China model (Model 1) | 38.39 | 0.0000 |
The northeast China model (Model 2) | 93.05 | 0.0000 |
The central China model (Model 3) | 71.25 | 0.0000 |
The eastern China model (Model 4) | 101.09 | 0.0000 |
The western China model (Model 5) | 64.60 | 0.0013 |
Independent Variables | The Whole China Model | The Northeast China Model | The Central China Model | The Eastern China Model | The Western China Model |
---|---|---|---|---|---|
TA | 0.145 *** | 2.514 *** | 0.478 *** | 0.295 *** | 0.054 |
(6.015) | (5.743) | (7.444) | (4.476) | (1.335) | |
PARA_MN | 1.389 *** | 1.370 *** | 0.653 ** | 3.034 *** | 0.691 *** |
(8.885) | (3.041) | (1.663) | (5.159) | (2.855) | |
LSI | 0.541 *** | 1.231 | 0.419 ** | 0.625 ** | 0.454 *** |
(5.590) | (0.900) | (1.842) | (2.029) | (3.152) | |
LPI | 0.778 | 0.596 | 0.353 *** | 0.113 | 0.0.26 |
(1.548) | (1.309) | (2.771) | (0.978) | (0.319) | |
DIVISION | 0.162 *** | 1.512 *** | 0.309 *** | 0.323 ** | 0.146 ** |
(2.631) | (8.650) | (2.581) | (2.541) | (1.981) | |
Estimation method R-squared | FE | FE | FE | FE | FE |
0.781 | 0.820 | 0.777 | 0.772 | 0.662 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Chen, J.; Zhou, C.; Wang, S.; Li, M. The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015. Atmosphere 2022, 13, 963. https://doi.org/10.3390/atmos13060963
Wang Z, Chen J, Zhou C, Wang S, Li M. The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015. Atmosphere. 2022; 13(6):963. https://doi.org/10.3390/atmos13060963
Chicago/Turabian StyleWang, Zefa, Jing Chen, Chunshan Zhou, Shaojian Wang, and Ming Li. 2022. "The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015" Atmosphere 13, no. 6: 963. https://doi.org/10.3390/atmos13060963
APA StyleWang, Z., Chen, J., Zhou, C., Wang, S., & Li, M. (2022). The Impacts of Urban Form on PM2.5 Concentrations: A Regional Analysis of Cities in China from 2000 to 2015. Atmosphere, 13(6), 963. https://doi.org/10.3390/atmos13060963