Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone
Abstract
:1. Introduction
2. Data and Methods
2.1. Observational Data
2.2. Model Configuration
2.3. Calculations
3. Observational Analysis
3.1. Overview of Precipitation
3.2. Synoptic Condition
3.3. Clouds of the Cyclone
3.4. Mesoscale Features of the Precipitation Clouds
4. Verification of Model Results
5. Stability and Forcing Mechanisms of Mesoscale Precipitation Areas
5.1. Rainfall Stage
5.1.1. Initial Stage of the ERA
5.1.2. Development of the ERA
5.1.3. Mature Stage of the ERA
5.2. Snowfall Stage
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, Y.; Lan, X.; Yang, C.F. Analysis of the cloud characteristic and the mechanism of an extreme rainfall-snowfall event associated with cyclones over Changjiang-Huaihe River basin. Plateau Meteorol. 2018, 37, 1325–1340. [Google Scholar]
- Yan, L.F.; Yang, C.F. Book of Disaster Weather Forecasting Technology in Shandong Province; China Meteorological Press: Beijing, China, 2014; pp. 182–183. [Google Scholar]
- Zheng, L.N.; Jin, J. Analysis on formation mechanism of rare ‘Thundersnow’ phenomenon in Shandong on 28 February 2010. Plateau Meteor. 2012, 31, 1151–1157. [Google Scholar]
- Yan, Q.; Jiang, D.K.; Chen, C.L. Climatic characteristics of regional snowstorm from 1960 to 2009 in Liaoning province. J. Meteorol. Environ. 2012, 28, 43–48. [Google Scholar]
- Fu, L.; Zhao, Y.; Yang, C.F.; Zhao, L. Statistical characteristics of the northward extratropical cyclone snowstorm affecting Northeast China. Plateau Meteorol. 2018, 37, 1705–1715. [Google Scholar]
- Cai, L.N.; Sui, Y.J.; Liu, D.Q.; Wang, S.; Liu, W.; Wang, T.K. Analysis on an unusual snowstorm event caused by explosive cyclone. Acta Sci. Nat. Univ. Pekin. 2009, 45, 693–700. [Google Scholar]
- Gao, S.Y.; Sun, L.Q.; Liu, T.W.; He, B.C. Diagnostic analysis of an extraordinarily severe snowstorm event in Liaoning province. Meteorol. Sci. Technol. 2009, 37, 175–180. [Google Scholar]
- Yang, X.X.; Wu, W.; Wan, M.B.; Sun, C.Z.; Wang, W.Q.; Diao, X.G. A comparative analysis of two snowstorms in Shandong Province. Meteor. Mon. 2012, 38, 868–876. [Google Scholar]
- Sun, X.; Cai, X.N.; Chen, C.L.; Jia, X.X.; Qiao, X.S. Analysis of the 4 March 2007 heavy snowstorm in northeast China. Meteorol. Mon. 2011, 37, 863–870. [Google Scholar]
- Ren, L.; Yang, W.W.; Tang, Y.; Ren, L.; Yang, W.W.; Tang, Y.; Zhang, H.J.; Wu, Y. Diagnostic analysis of a snow-storm caused by explosive cyclone. J. Meteorol. Environ. 2015, 31, 45–52. [Google Scholar]
- Ren, L.; Zhang, G.H.; Zhou, Y.H.; Chen, X.F. Study on dynamic system of explosive cyclone causing a snow storm in Heilongjiang province. J. Meteorol. Environ. 2016, 32, 28–36. [Google Scholar]
- Yi, X.Y.; Li, Z.C.; Chen, T.; Li, Y. Activities of cold-dry air and its impact on heavy rain–snow processes in North China during March 3–5 2007. J. Nanjing Inst. Meteorol. 2009, 32, 306–313. [Google Scholar]
- Sun, Y.H.; Li, Z.C.; Shou, S.W. A mesoscale analysis of the snowstorm event of 3–5 March 2007 in Liaoning province. Acta Meteorol. Sin. 2012, 70, 936–948. [Google Scholar]
- Sun, Y.H.; Li, Z.C.; Shou, S.W. An investigation into the features and effects of the mesoscale gravity waves as in a snowstorm event. Acta Meteorol. Sin. 2015, 73, 697–710. [Google Scholar]
- Zhao, Y.; Zhu, H.Q.; Lan, X.; Yang, C. Structure of the snowstorm cloud associated with northward Jiang-huai cyclone based on Cloud satsatellite data. Chin. J. Geophys. 2018, 61, 4789–4804. [Google Scholar] [CrossRef]
- Zhao, Y.; Lan, X.; Yang, C.F. Radar echo and airmass structure of the comma head within a Jiang-Huai cyclone in winter. Acta Meteorol. Sin. 2018, 76, 726–741. [Google Scholar]
- Zhao, Y.; Fu, L.; Yang, C.F.; Chen, X.F. Case study of a heavy snowstorm associated with an extratropical dyclone featuring a back-bent warm front structure. Atmosphere 2020, 11, 1272. [Google Scholar] [CrossRef]
- Novak, D.R.; Bosart, L.F.; Keyser, D.; Waldstreicher, J.S. An observational study of cold season–banded precipitation in northeast U.S. cyclones. Weather. Forecast. 2004, 19, 993–1010. [Google Scholar] [CrossRef]
- Novak, D.R.; Colle, B.A.; Aiyyer, A.R. Evolution of Mesoscale Precipitation Band Environments within the Comma Head of Northeast U.S. Cyclones. Mon. Weather Rev. 2010, 138, 2354–2374. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.A.; Schumacher, P.N. Distribution of single-banded snowfall in central U.S. cyclones. Weather Forecast. 2017, 32, 533–554. [Google Scholar] [CrossRef]
- Ganetis, S.A.; Colle, B.A. The thermodynamic and microphysical evolution of an intense snowband during the Northeast U.S. Blizzard of 8–9 February 2013. Mon. Weather Rev. 2015, 143, 4104–4125. [Google Scholar] [CrossRef]
- Ganetis, S.A.; Colle, B.A.; Yuter, S.E.; Hoban, N.P. Environmental conditions associated with observed snowband structures within northeast U.S. winter storms. Mon. Weather Rev. 2018, 146, 3675–3690. [Google Scholar] [CrossRef]
- Lackmann, G.M.; Thompson, G. Hydrometeor lofting and mesoscale snowbands. Mon. Weather Rev. 2019, 147, 3879–3899. [Google Scholar] [CrossRef]
- Chen, G.X.; Wang, W.C.; Chen, C.T.; Hsu, H.H. Extreme snow events along the coast of the northeast United States: Potential changes due to global warming. J. Clim. 2021, 34, 2337–2353. [Google Scholar] [CrossRef]
- Martin, J.E. The structure and evolution of a continental winter cyclone—Part I: Frontal structure and the occlusion process. Mon. Weather Rev. 1998, 126, 303–328. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Vaughan, G. Occluded fronts and the occlusion process. A fresh look at conventional wisdom. Bull. Am. Meteorol. Soc. 2011, 92, 443–466. [Google Scholar] [CrossRef]
- Wiesmueller, J.L.; Zubrick, S.M. Evaluation and application of conditional symmetric instability, equivalent potential vorticity, and frontogenetic forcing in an operational forecast environment. Weather Forecast. 1998, 13, 84–101. [Google Scholar] [CrossRef]
- Nicosia, D.J.; Grumm, R.H. Mesoscale band formation in three major northeastern United States snowstorms. Weather Forecast. 1999, 14, 346–368. [Google Scholar] [CrossRef] [Green Version]
- Bennetts, D.A.; Hoskins, B.J. Conditional symmetric instability—A Possible explanation for frontal rain bands. Q. J. R. Meteorol. Soc. 1979, 105, 945–962. [Google Scholar] [CrossRef]
- Emanuel, K.A. Frontal circulations in the presence of small moist symmetric stability. J. Atmos. Sci. 1985, 42, 1062–1071. [Google Scholar] [CrossRef]
- Xu, Q. Frontal circulations in the presence of small viscous moist symmetric stability and weak forcing. Q. J. R. Meteorol. Soc. 1989, 115, 1325–1353. [Google Scholar] [CrossRef]
- Sanders, F.L.; Bosart, F. Mesoseale structure in the MegaloPolitan snowstorm of 11–12 February1983—Part I: Frontogenetical forcing and symmetric instability. J. Atmos sci. 1985, 42, 1050–1061. [Google Scholar] [CrossRef] [Green Version]
- Sanders, F.L. Frontogenesis and symmetric stability in a major New England snowstorm. Mon. Weather Rev. 1986, 114, 1847–1862. [Google Scholar] [CrossRef]
- Moore, J.T.; Blakley, P.D. The role of frontogenetical forcing and conditional symmetric instability in the Midwest snowstorm of 30–31 January 1982. Mon. Weather Rev. 1988, 116, 2155–2171. [Google Scholar] [CrossRef] [Green Version]
- Novak, D.R.; Waldstreicher, J.S.; Keyser, D.; Bosart, L.F. A forecast strategy for anticipating cold season mesoscale band formation within eastern U. S. cyclones. Weather Forecast. 2006, 21, 3–23. [Google Scholar] [CrossRef]
- Weisman, R.A. The Fargo Snowstorm of 6–8 January 1989. Weather Forecast. 1996, 11, 198–215. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. Forced and free mesoscale motions in the atmosphere. Collection of Lecture Notes on Dynamics of Mesometeorological Disturbances. In Proceedings of the Cooperative Institute for Meteorological Satellite Studies symposium, Norman, OK, USA, 22 April 1980; pp. 191–259. [Google Scholar]
- Jascourt, S.D.; Lindstrom, S.S.; Seman, C.J.; Houghton, D.D. An observation of banded convective development in the presence of weak symmetric stability. Mon. Weather Rev. 1988, 116, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Reuter, G.W.; Aktary, N. Convective and symmetric instabilities and their effects on precipitation: Seasonal variations in central Alberta during 1990 and 1991. Mon. Weather Rev. 1995, 123, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q. Conditional symmetric instability and mesoscale rainbands. Q. J. R. Meteorol. Soc. 1986, 112, 315–334. [Google Scholar] [CrossRef]
- Holt, M.W.; Thorpe, A.J. Localized forcing of slantwise motion at fronts. Q. J. R. Meteorol. Soc. 1991, 117, 943–963. [Google Scholar] [CrossRef]
- Morcrette, C.J.; Browning, K.A. Formation and release of symmetric instability following Delta-M adjustment. Q. J. R. Meteorol. Soc. 2006, 132, 1073–1089. [Google Scholar] [CrossRef] [Green Version]
- Fischer, C.; Lalaurette, F. Meso-β-scale circulations in realistic fronts. Ⅰ: Steady basic state. Q. J. R. Meteorol. Soc. 1995, 121, 1255–1283. [Google Scholar] [CrossRef]
- Fischer, C.; Lalaurette, F. Meso-β-scale circulations in realistic fronts. Ⅱ: Frontogenetically forced basic states. Q. J. R. Meteorol. Soc. 1995, 121, 1285–1321. [Google Scholar] [CrossRef]
- Novak, D.R.; Colle, B.A.; Yuter, S.E. High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Weather Rev. 2008, 136, 1433–1456. [Google Scholar] [CrossRef]
- Schultz, D.M.; Zhang, F. Baroclinic development within zonally varying flows. Q. J. R. Meteorol. Soc. 2007, 133, 1101–1112. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Schultz, D.M.; Knox, J.A. Convective snowbands downstream of the Rocky mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Weather Rev. 2010, 138, 4416–4438. [Google Scholar] [CrossRef]
- Sheng, C.Y.; Yang, X.X. Symmetry instability analysis of an unusual storm snow in Shandong Province. Meteorol. Mon. 2003, 28, 33–36. [Google Scholar]
- Zhou, X.S.; Yang, C.F.; Sun, X.C. Comparative analyses on two early spring snowstorm processes. Plateau Meteorol. 2013, 32, 446–455. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-4751STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; 113p. [Google Scholar]
- Chen, F.; Dudhia, J. Coupling an advanced land surface hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain-Frisch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.E. On the concept of frontogenesis. J. Meteorol. 1948, 5, 169–171. [Google Scholar] [CrossRef]
- Sawyer, J.S. The vertical circulation at meteorological fronts and its relation to frontogenesis. Proc. R. Soc. Lond. 1956, 234, 346–362. [Google Scholar]
- Eliassen, A. On the vertical circulation in frontal zones. Geophys. Publ. 1962, 24, 147–160. [Google Scholar]
- Hakim, G.J.; Keyser, D. Canonical frontal circulation patterns in terms of Green’s functions for the Sawyer–Eliassen equation. Q. J. R. Meteorol. Soc. 2001, 127, 1795–1814. [Google Scholar] [CrossRef]
- Thorpe, A.J.; Clough, S.A. Mesoscale dynamics of cold fronts: Structures described by dropsoundings in FRONTS 87. Q. J. R. Meteorol. Soc. 1991, 117, 903–941. [Google Scholar] [CrossRef]
- Jurewicz, M.L.; Evans, M.S., Sr. A comparison of two banded, heavy snowstorms with very different synoptic settings. Weather Forecast. 2004, 19, 1011–1028. [Google Scholar] [CrossRef]
- Schultz, D.M.; Knox, J.A. Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Weather Rev. 2007, 135, 2095–2110. [Google Scholar] [CrossRef]
- Chagnon, J.M.; Gray, S.L. Horizontal potential vorticity dipoles on the convective storm scale. Q. J. R. Meteorol. Soc. 2009, 135, 1392–1408. [Google Scholar] [CrossRef]
- Blanchard, D.O.; Cotton, W.R.; Brown, J.M. Mesoscale circulation growth under conditions of weak inertial instability. Mon. Weather Rev. 1998, 126, 118–140. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Lan, X.; Li, S.; Yang, C. Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone. Atmosphere 2022, 13, 942. https://doi.org/10.3390/atmos13060942
Zhao Y, Lan X, Li S, Yang C. Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone. Atmosphere. 2022; 13(6):942. https://doi.org/10.3390/atmos13060942
Chicago/Turabian StyleZhao, Yu, Xin Lan, Shuling Li, and Chengfang Yang. 2022. "Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone" Atmosphere 13, no. 6: 942. https://doi.org/10.3390/atmos13060942
APA StyleZhao, Y., Lan, X., Li, S., & Yang, C. (2022). Case Study of Mesoscale Precipitation Areas within the Comma Head of an Extratropical Cyclone. Atmosphere, 13(6), 942. https://doi.org/10.3390/atmos13060942