Anthropogenic Aerosols Effects on Ice Clouds: A Review
Abstract
:1. Introduction
2. Anthropogenic Aerosols as Effective Ice Nucleating Particles
3. Effect of Anthropogenic Aerosols on Ice Cloud Properties
3.1. Effect of Anthropogenic Aerosols on Effective Radius of Ice Crystals
3.2. Effect of Anthropogenic Aerosols on Ice Cloud Cover
3.3. Effect of Anthropogenic Aerosols on Other Properties of Ice Clouds
4. Effect of Anthropogenic Aerosols on Radiative Forcing through Ice Clouds
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hoyle, C.R.; Myhre, G.; Berntsen, T.K.; Isaksen, I.S.A. Anthropogenic influence on SOA and the resulting radiative forcing. Atmos. Chem. Phys. 2009, 9, 2715–2728. [Google Scholar] [CrossRef] [Green Version]
- Skeie, R.B.; Berntsen, T.K.; Myhre, G.; Tanaka, K.; Kvalevåg, M.M.; Hoyle, C.R. Anthropogenic radiative forcing time series from pre-industrial times until 2010. Atmos. Chem. Phys. 2011, 11, 11827–11857. [Google Scholar] [CrossRef] [Green Version]
- Skeie, R.B.; Berntsen, T.; Myhre, G.; Pedersen, C.A.; Ström, J.; Gerland, S.; Ogren, J.A. Black carbon in the atmosphere and snow, from pre-industrial times until present. Atmos. Chem. Phys. 2011, 11, 6809–6836. [Google Scholar] [CrossRef] [Green Version]
- Houghton, J.T.; Meira Filho, L.G.; Callander, B.A.; Harris, N.; Kattenberg, A.; Maskell, K. Climate Change 1995: The Science of Climate Change; Contribution of WGI to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996; 572p. [Google Scholar]
- Shen, X.; Liu, B.; Li, G.; Wu, Z.; Jin, Y.; Yu, P.; Zhou, D. Spatiotemporal change of diurnal temperature range and its relationship with sunshine duration and precipitation in China. J. Geophys. Res. Atmos. 2014, 119, 13163–13179. [Google Scholar] [CrossRef]
- Williams, A.S.; Igel, A.L. Cloud top radiative cooling rate drives non-precipitating stratiform cloud responses to aerosol concentration. Geophys. Res. Lett. 2021, 48, e2021GL094740. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. Atmos. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Charlson, R.J.; Pilat, M.J. Climate: The influence of aerosols. J. Appl. Meteorol. Climatol. 1969, 8, 1001–1002. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 312, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci. 1977, 34, 1149–1152. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, B. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Wylie, D.P.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in global cloud cover in two decades of HIRS observations. J. Clim. 2005, 18, 3021–3031. [Google Scholar] [CrossRef]
- Wylie, D.P.; Menzel, W.P.; Woolf, H.M.; Strabala, K.I. Four years of global cirrus cloud statistics using HIRS. J. Clim. 1994, 7, 1972–1986. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.N. Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Weather Rev. 1986, 114, 1167–1199. [Google Scholar] [CrossRef]
- Mace, G.G.; Clothiaux, E.E.; Ackerman, T.P. The composite characteristics of cirrus clouds: Bulk properties revealed by one year of continuous cloud radar data. J. Clim. 2001, 14, 2185–2203. [Google Scholar] [CrossRef]
- Mace, G.G.; Benson, S.; Vernon, E. Cirrus clouds and the large-scale atmospheric state: Relationships revealed by six years of ground-based data. J. Clim. 2006, 19, 3257–3278. [Google Scholar] [CrossRef]
- Krämer, M.; Rolf, C.; Luebke, A.; Afchine, A.; Spelten, N.; Costa, A.; Meyer, J.; Zöger, M.; Smith, J.; Herman, R.L.; et al. A microphysics guide to cirrus clouds-Part I: Cirrus types. Atmos. Chem. Phys. 2016, 16, 3463–3483. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Jiang, J.H.; Gu, Y.; Diner, D.; Worden, J.; Liou, K.N.; Su, H.; Xing, J.; Garay, M.; Huang, L. Decadal-scale trends in regional aerosol particle properties and their linkage to emission changes. Environ. Res. Lett. 2017, 12, 054021. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Andreae, M.O.; Asmi, A.; Chin, M.; de Leeuw, G.; Donovan, D.P.; Kahn, R.; Kinne, S.; Kivekäs, N.; Kulmala, M.; et al. Global observations of aerosol-cloud-precipitation-climate interactions. Rev. Geophys. 2014, 52, 750–808. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Zhao, B.; Liou, K.N.; Gu, Y.; Jiang, J.H.; Li, Q.; Fu, R.; Huang, L.; Liu, X.; Shi, X.; Su, H.; et al. Impact of aerosols on ice crystal size. Atmos. Chem. Phys. 2018, 18, 1065–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Gu, Y.; Liou, K.N.; Wang, Y.; Liu, X.; Huang, L.; Jiang, J.H.; Su, H. Type-dependent responses of ice cloud properties to aerosols from satellite retrievals. Geophys. Res. Lett. 2018, 45, 3297–3306. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Gu, Y.; Liou, K.N.; Jiang, J.H.; Fan, J.; Liu, X.; Huang, L.; Yung, Y.L. Ice nucleation by aerosols from anthropogenic pollution. Nat. Geosci. 2019, 12, 602–607. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Huang, L.; Wang, Y.; Massie, S.; Zhao, B.; Omar, A.; Wang, Z. Contrasting effects on deep convective clouds by different types of aerosols. Nat. Commu. 2018, 9, 3874. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Penner, J.E. Radiative forcing of anthropogenic aerosols on cirrus clouds using a hybrid ice nucleation scheme. Atmos. Chem. Phys. 2020, 20, 7801–7827. [Google Scholar] [CrossRef]
- Rogers, D.C.; DeMott, P.J.; Kreidenweis, S.M.; Chen, Y. Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett. 1998, 25, 1383–1386. [Google Scholar] [CrossRef]
- Rosinski, J.; Morgan, G.M. Ice-forming nuclei in transvaal, Republic of South Africa. J. Aerosol Sci. 1988, 19, 531–538. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Bretherton, C.; Carslaw, K.S.; Coe, H.; DeMott, P.J.; Dunlea, E.J.; Feingold, G.; Ghan, S.; Guenther, A.B.; Kahn, R.; et al. Improving our fundamental understanding of the role of aerosol–cloud interactions in the climate system. Proc. Natl. Acad. Sci. USA 2016, 113, 5781–5790. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [Green Version]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef] [Green Version]
- Murray, B.J.; O’Sullivan, D.; Atkinson, J.D.; Webb, M.E. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev. 2012, 41, 6519–6554. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J. Seasonal change in satellite-retrieved lower-tropospheric ice-cloud fraction over the Southern Ocean. Geophys. Res. Lett. 2021, 48, e2021GL095295. [Google Scholar] [CrossRef]
- You, L.; Shi, A. The measurement and analysis of ice-nucleuscon centration at Peking during the period from march 18th to April 30th in 1963. Acta Meteorol. Sin. 1964, 34, 548–554. [Google Scholar]
- You, L.; Yang, S.; Wang, X.; Pi, J. Study of ice nuclei concentration at Beijing in spring of 1995 and 1996. Acta Meteorol. Sin. 2002, 60, 101–109. [Google Scholar]
- Yang, L.; Yin, Y.; Yang, S.; Su, H.; Jiang, H. Characteristics of atmospheric ice nuclei and its relationship to aerosols in winter in Nanjing. Chin. J. Atmos. Sci. 2013, 37, 983–993. [Google Scholar]
- Yin, J.; Wang, D.; Zhai, G. Long-term in situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmos. Res. 2011, 102, 206–217. [Google Scholar] [CrossRef]
- Knopf, D.A.; Wang, B.; Laskin, A.; Moffet, R.C.; Gilles, M.K. Heterogeneous nucleation of ice on anthropogenic organic particles collected in Mexico City. Geophys. Res. Lett. 2010, 37, L11803. [Google Scholar] [CrossRef] [Green Version]
- Cziczo, D.J.; Froyd, K.D.; Hoose, C.; Jensen, E.J.; Diao, M.; Zondlo, M.A.; Smith, J.B.; Twohy, C.H.; Murphy, D.M. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 2013, 340, 1320–1324. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, K.; Qian, Y.; Wang, Y.; Zou, Y.; Song, Y.; Wan, H.; Liu, X.; Yang, X.-Q. Investigation of short-term effective radiative forcing of fire aerosols over North America using nudged hindcast ensembles. Atmos. Chem. Phys. 2018, 18, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Yu, X.; Liu, G.; Xu, X.; Zhu, Y.; Yue, Z.; Dai, J.; Dong, Z.; Dong, Y.; Peng, Y. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke from forest fires. Geophys. Res. Lett. 2011, 38, L21804. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Schoeberl, M.R.; Massie, S.T.; Colarco, P.; Platnick, S.; Livesey, N.J. Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America. Geophys. Res. Lett. 2008, 35, L14804. [Google Scholar] [CrossRef] [Green Version]
- Patnaude, R.; Diao, M. Aerosol indirect effects on cirrus clouds based on global aircraft observations. Geophys. Res. Lett. 2020, 47, e2019GL086550. [Google Scholar] [CrossRef]
- Koop, T.; Luo, B.; Tsias, A.; Peter, T. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 2000, 406, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Knopf, D.A.; Alpert, P.A.; Wang, B. The role of organic aerosol in atmospheric ice nucleation: A review. ACS Earth Space Chem. 2018, 2, 168–202. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X. Sensitivity study of anthropogenic aerosol indirect forcing through cirrus clouds with CAM5 using three ice nucleation parameterizations. J. Meteorol. Res. 2018, 32, 693–706. [Google Scholar] [CrossRef]
- Cziczo, D.J.; Stetzer, O.; Worringen, A.; Ebert, M.; Weinbruch, S.; Kamphus, M.; Gallavardin, S.J.; Curtius, J.; Borr-mann, S.; Froyd, K.D.; et al. Inadvertent climate modification due to anthropogenic lead. Nat. Geosci. 2009, 2, 333–336. [Google Scholar] [CrossRef]
- Ebert, M.; Worringen, A.; Benker, N.; Mertes, S.; Weingartner, E.; Weinbruch, S. Chemical composition and mixing state of ice residuals sampled within mixed phase clouds. Atmos. Chem. Phys. 2011, 11, 2805–2816. [Google Scholar] [CrossRef] [Green Version]
- Kamphus, M.; Ettner-Mahl, M.; Killmach, T.; Drewnick, F.; Keller, L.; Cziczo, D.J.; Mertes, S.; Borrmann, S.; Curtius, J. Chemical composition of ambient aerosol, ice residues, and lcoud droplet residues in mixed-phase clouds: Single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6). Atmos. Chem. Phys. 2010, 10, 8077–8095. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Mahrt, F.; Marcolli, C.; David, R.O.; Grönquist, P.; Barthazy Meier, E.J.; Lohmann, U.; Kanji, Z.A. Ice nucleation abilities of soot particles determined with the Horizontal Ice Nucleation Chamber. Atmos. Chem. Phys. 2018, 18, 13363–13392. [Google Scholar] [CrossRef] [Green Version]
- Charnawskas, J.C.; Alpert, P.A.; Lambe, A.T.; Berkemeier, T.; O’Brien, R.E.; Massoli, P.; Onasch, T.B.; Shiraiwa, M.; Moffet, R.C.; Gilles, M.K.; et al. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation. Faraday Discuss. 2017, 200, 165–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, H.M.; Malinowski, A.; Martin, S.T. Ice nucleation kinetics of aerosols containing aqueous and solid ammonium sulfate particles. J. Phys. Chem. A 2002, 106, 293–306. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Krämer, M. Chapter 1: Overview of Ice Nucleating Particles. In Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges; Baumgardner, D., McFarquhar, G.M., Heymsfield, A.J., Eds.; American Meteorological Society: Boston, MA, USA, 2017; Volume 58, pp. 1.1–1.33. [Google Scholar]
- Cziczo, D.J.; Ladino, L.; Boose, Y.; Kanji, Z.A.; Kupiszewski, P.; Lance, S.; Mertes, S.; Wex, H. Chapter 8: Measurements of Ice Nucleating Particles and Ice Residuals. In Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges; Baumgardner, D., McFarquhar, G.M., Heymsfield, A.J., Eds.; American Meteorological Society: Boston, MA, USA, 2017; Volume 58, pp. 8.1–8.13. [Google Scholar]
- Chylek, P.; Dubey, M.K.; Lohmann, U.; Ramanathan, V.; Kaufman, Y.J.; Lesins, G.; Hudson, J.; Altmann, G.; Olsen, S. Aerosol indirect effect over the Indian Ocean. Geophys. Res. Lett. 2006, 33, L06806. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.H.; Su, H.; Zhai, C.; Massie, S.T.; Schoeberl, M.R.; Colarco, P.R.; Platnick, S.; Gu, Y.; Liou, K.N. Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys. 2011, 11, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Li, Z.; Kahn, R.A.; Zhao, C.; Rosenfeld, D.; Guo, J.; Han, W.; Chen, D. Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China. Atmos. Chem. Phys. 2021, 21, 6199–6220. [Google Scholar] [CrossRef]
- Koren, I.; Martins, J.V.; Remer, L.A.; Afargan, H. Smoke invigoration versus inhibition of clouds over the Amazon. Science 2008, 321, 946–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Su, T.; Li, Z.; Miao, Y.; Li, J.; Liu, H.; Xu, H.; Cribb, M.; Zhai, P. Declining frequency of summertime local-scale precipitation over eastern China from 1970 to 2010 and its potential link to aerosols. Geophys. Res. Lett. 2017, 44, 5700–5708. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Z.; Guo, J.; Zhao, C.; Cribb, M. The climate impact of aerosols on the lightning flash rate: Is it detectable from long-term measurements? Atmos. Chem. Phys. 2018, 18, 12797–12816. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Chen, J.P.; Li, Z.; Wang, C.; Zhai, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Wang, Y.; Rosenfeld, D.; Liu, X. Review of aerosol-cloud interactions: Mechanisms, significance, and challenges. J. Atmos. Sci. 2016, 73, 4221–4252. [Google Scholar] [CrossRef]
- Dagan, G.; Koren, I.; Altaratz, O.; Heiblum, R.H. Aerosol effect on the evolution of the thermodynamic properties of warm convective cloud fields. Sci. Rep. 2016, 6, 38769. [Google Scholar] [CrossRef] [Green Version]
- Wall, C.; Zipser, E.; Liu, C. An investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci. 2014, 71, 430–447. [Google Scholar] [CrossRef] [Green Version]
- Storelvmo, T. Aerosol effects on climate via mixed-phase and ice clouds. Annu. Rev. Earth Planet Sci. 2017, 45, 199–222. [Google Scholar] [CrossRef]
- Liu, X.; Penner, J.E. Ice nucleation parameterization for global models. Meteorol. Z. 2005, 14, 499–514. [Google Scholar] [CrossRef]
- Kärcher, B.; Hendricks, J.; Lohmann, U. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res. Atmos. 2006, 111, D01205. [Google Scholar] [CrossRef] [Green Version]
- Barahona, D.; Nenes, A. Parameterization of cirrus cloud formation in large-scale models: Homogeneous nucleation. J. Geophys. Res. Atmos. 2008, 113, D11211. [Google Scholar] [CrossRef]
- Penner, J.E.; Chen, Y.; Wang, M.; Liu, X. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos. Chem. Phys. 2009, 9, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Penner, J.E.; Zhou, C.; Garnier, A.; Mitchell, D.L. Anthropogenic aerosol indirect effects in cirrus clouds. J. Geophys. Res. Atmos. 2018, 123, 11652–11677. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shi, X. Sensitivity of homogeneous ice nucleation to aerosol perturbations and its implications for aerosol indirect effects through cirrus clouds. Geophys. Res. Lett. 2018, 45, 1684–1691. [Google Scholar] [CrossRef]
- Gettelman, A.; Liu, X.; Barahona, D.; Lohmann, U.; Chen, C. Climate impacts of ice nucleation. J. Geophys. Res. Atmos. 2012, 117, D20201. [Google Scholar] [CrossRef] [Green Version]
- Ignatius, K.; Kristensen, T.B.; Järvinen, E.; Nichman, L.; Fuchs, C.; Gordon, H.; Herenz, P.; Hoyle, C.R.; Duplissy, J.; Garimella, S.; et al. Heterogeneous ice nucleation of viscous secondary organic aerosol produced from ozonolysis of α-pinene. Atmos. Chem. Phys. 2016, 16, 6495–6509. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Höhler, K.; Huang, W.; Kiselev, A.; Möhler, O.; Mohr, C.; Pajunoja, A.; Saathoff, H.; Schiebel, T.; Shen, X.; et al. Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing. J. Geophys. Res. Atmos. 2017, 122, 4924–4943. [Google Scholar] [CrossRef]
- DeMott, P.J.; Cziczo, D.J.; Prenni, A.J.; Murphy, D.M.; Kreidenweis, S.M.; Thomson, D.S.; Borys, R.; Rogers, D.C. Measurements of the concentration and composition of nuclei for cirrus formation. Proc. Natl. Acad. Sci. USA 2003, 100, 14655–14660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, T.W.; Murray, B.J.; Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Price, H.C.; Malkin, T.L.; Dobbie, S.; et al. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures. Atmos. Chem. Phys. 2012, 12, 8611–8632. [Google Scholar] [CrossRef]
Location/Period | Method | Remarks | Reference |
---|---|---|---|
Beijing, China/spring, 1963 | Field measurements | INP concentrations in heavy pollution haze cases were two times higher than those in dust storms | [35] |
Beijing, China/spring, 1995 | Field measurements | The INP activity of air pollution is comparable to that of heavy dust | [36] |
Nanjing, China/winter, 2011 | Field measurements | INP concentrations originating from pollution regions were larger than those originating from desserts | [37] |
China/1980–2010 | Survey of the existing literature on field measurements | Natural processes alone could not explain the increase in INP concentrations | [38] |
Mexico City, Mexico/March, 2006 | Field measurements | potential contribution of anthropogenicIn highly polluted environment, anthropogenic organic particles had potential contribution to the formation of cirrus clouds | [39] |
North and Central America and nearby ocean/2002–2011 | Aircraft measurements | Dominant component of ice residuals of cirrus clouds was metallic particle | [40] |
East Asia | Satellite observations | Heavy air pollution and desert dust have similar ability to glaciate the tops of growing clouds | [43] |
East Asia | Satellite observations | Similar Rei-AOD relationships between dust and polluted continental aerosols was observed | [25] |
East Asia | Cloud-resolving model | A portion of polluted continental aerosols can serve as INPs. | [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, R. Anthropogenic Aerosols Effects on Ice Clouds: A Review. Atmosphere 2022, 13, 910. https://doi.org/10.3390/atmos13060910
Yang Y, Liu R. Anthropogenic Aerosols Effects on Ice Clouds: A Review. Atmosphere. 2022; 13(6):910. https://doi.org/10.3390/atmos13060910
Chicago/Turabian StyleYang, Yang, and Run Liu. 2022. "Anthropogenic Aerosols Effects on Ice Clouds: A Review" Atmosphere 13, no. 6: 910. https://doi.org/10.3390/atmos13060910
APA StyleYang, Y., & Liu, R. (2022). Anthropogenic Aerosols Effects on Ice Clouds: A Review. Atmosphere, 13(6), 910. https://doi.org/10.3390/atmos13060910