Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight
Abstract
:1. Introduction
2. Methods
2.1. LLJ Definition
2.2. Atmospheric Stability
3. Study Sites and Data Base
3.1. Heligoland
3.2. Norderney
3.3. FINO1/Alpha-Ventus
3.4. St. Peter-Ording
4. WRF Modelling of the LLJ
5. Results and Discussion
5.1. Weibull Distribution and Wind Roses for the Sites Heligoland and Norderney
5.2. Statistics on LLJ Occurrence
5.3. LLJ Dependence on Atmospheric Stability
5.4. LLJ Extent: Case Study for 2 June 2017
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbeitsgruppe Erneuerbare Energien—Statistik (AGEE-Stat): Zeitreihen zur Entwicklung der Erneuerbaren Energien in Deutschland, Stand Februar. Available online: https://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html (accessed on 1 April 2022).
- Steele, C.J.; Dorling, S.R.; von Glasow, R.; Bacon, J. Modelling sea-breeze climatologies and interactions on coasts in the southern North Sea: Implications for offshore wind energy. Q. J. R. Meteorol. Soc. 2015, 141, 1821–1835. [Google Scholar] [CrossRef] [Green Version]
- Schulz-Stellenfleth, J.; Emeis, S.; Dörenkämper, M.; Bange, J.; Cañadillas, B.; Neumann, T.; Schneemann, J.; Weber, I.; zum Berge, K.; Platis, A.; et al. Coastal impacts on offshore wind farms—A review focussing on the German Bight area. Meteorol. Z. 2002. [Google Scholar] [CrossRef]
- Platis, A.; Bange, J.; Bärfuss, K.; Cañadillas, B.; Hundhausen, M.; Djath, B.; Lampert, A.; Schulz-Stellenfleth, J.; Siedersleben, S.; Neumann, T.; et al. Long-range modifications of the wind field by offshore wind parks – results of the project WIPAFF. Meteorol. Z. 2020, 29, 355–376. [Google Scholar] [CrossRef]
- Cañadillas, B.; Foreman, R.; Barth, V.; Siedersleben, S.; Lampert, A.; Platis, A.; Djath, B.; Schulz-Stellenfleth, J.; Bange, J.; Emeis, S.; et al. Offshore wind farm wake recovery: Airborne measurements and its representation in engineering models. Wind. Energy 2020, 23, 1249–1265. [Google Scholar] [CrossRef]
- Schneemann, J.; Rott, A.; Dörenkämper, M.; Steinfeld, G.; Kühn, M. Cluster wakes impact on a far-distant offshore wind farm’s power. Wind. Energy Sci. 2020, 5, 29–49. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, N.G.; Steen, S.T.; Poulsen, L.; Pedersen, J.G. Modelling cluster wakes and wind farm blockage. J. Phys. Conf. Ser. 2020, 1618, 062072. [Google Scholar] [CrossRef]
- Wagner, D.; Steinfeld, G.; Witha, B.; Wurps, H.; Reuder, J. Low Level Jets over the Southern North Sea. Meteorol. Z. 2019, 28, 389–415. [Google Scholar] [CrossRef]
- Blackadar, A.K. Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Am. Met. Soc. 1957, 38, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Emeis, S. Wind speed and shear associated with low-level jets over Northern Germany. Meterologische Z. 2014, 23, 295–304. [Google Scholar] [CrossRef]
- Seefeldt, M.W.; Cassano, J.J. An Analysis of Low-Level Jets in the Greater Ross Ice Shelf Region Based on Numerical Simulations. Mon. Weather Rev. 2008, 136, 4188–4205. [Google Scholar] [CrossRef]
- Kallistratova, M.A.; Kouznetsov, R.D.; Kramar, V.F.; Kouznetsov, D.D. Profiles of Wind Speed Variances within Nocturnal Low-Level Jets Observed with a Sodar. J. Atmos. Ocean. Technol. 2013, 30, 1970–1977. [Google Scholar] [CrossRef]
- Nakanishi, M.; Shibuyu, R.; Ito, J.; Niino, H. Large-Eddy Simulation of a Residual Layer: Low-Level Jet, Convective Rolls, and Kelvin-Helmholtz Instability. J. Atmos. Sci. 2014, 71, 4473–4491. [Google Scholar] [CrossRef]
- Doyle, J.D.; Warner, T.T. A Three-Dimensional Numerical Investigation of a Carolina Coastal Low-Level Jet during GALE IOP 2. Mon. Weather Rev. 1993, 121, 1030–1047. [Google Scholar] [CrossRef]
- Gross, G. Numerical simulation of future low-level jet characteristics. Meteorol. Z. 2012, 21, 305–311. [Google Scholar] [CrossRef]
- Heinold, B.; Knippertz, P.; Marsham, J.H.; Fiedler, S.; Dixon, N.S.; Schepanski, K.; Laurent, B.; Tegen, I. The role of deep convection and nocturnal low-level jets for dust emission in summertime West Africa: Estimates from convection-permitting simulations. J. Geophys. Res. Atmos. 2013, 118, 4385–4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjha, R.; Svensson, G.; Tjernström, M.; Semedo, A. Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalyses. Tellus A 2013, 65, 20412. [Google Scholar] [CrossRef] [Green Version]
- Banta, R.M. Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys. 2008, 56, 58–87. [Google Scholar] [CrossRef]
- Storm, B.; Dudhia, J.; Basu, S.; Swift, A.; Giammanco, I. Evaluation of the Weather Research and Forecasting model on Forecasting Low-Level Jets: Implications for Wind Energy. Wind Energy 2009, 12, 81–90. [Google Scholar] [CrossRef]
- Song, J.; Liao, K.; Coulter, R.L.; Lesht, B.M. Climatology of the low-level jet at the southern great plains atmospheric boundary layer experiments site. J. Appl. Meteorol. 2005, 44, 1593–1606. [Google Scholar] [CrossRef]
- Davies, P.A. Development and mechanisms of the nocturnal jet. Meteorol. Appl. 2000, 2000, 239–246. [Google Scholar] [CrossRef]
- Savijärvi, H.; Niemelä, S.; Tisler, P. Coastal winds and low-level jets: Simulations for sea gulfs. Q. J. R. Met. Soc. 2005, 131, 625–637. [Google Scholar] [CrossRef]
- Abdou, K.; Parker, D.J.; Brooks, B.; Kalthoff, N.; Lebel, T. The diurnal cycle of lower boundary-layer wind in the West African monsoon. Q. J. R. Meteorol. Soc. 2010, 136 (Suppl. S1), 66–76. [Google Scholar] [CrossRef]
- Stensrud, D.J. Importance of Low-Level Jets to Climate: A Review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Banta, R.M.; Newsome, R.K.; Lundquist, J.K.; Pichugina, Y.L.; Coulter, R.L.; Mahrt, L. Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteorol. 2002, 105, 221–252. [Google Scholar] [CrossRef]
- Baas, P.; Bosveld, F.C.; Klein Baltink, H.; Holtslag, A.A.M. A Climatology of Nocturnal Low-Level Jets at Cabauw. J. Appl. Meteor. Climatol. 2009, 48, 1627–1642. [Google Scholar] [CrossRef]
- Lampert, A.; Bernalte Jimenez, B.; Gross, G.; Wulff, D.; Kenull, T. One Year Observations of the Wind Distribution and Low-Level Jet Occurrence at Braunschweig, North German Plain. Wind Energy 2015, 19, 1807–1817. [Google Scholar] [CrossRef]
- Marke, T.; Crewell, S.; Schemann, V.; Schween, J.; Tuononen, M. Long-Term Observations and High-Resolution Modeling of Midlatitude Nocturnal Boundary Layer Processes Connected to Low-Level Jets. J. Appl. Meteor. Climatol. 2018, 57, 1155–1170. [Google Scholar] [CrossRef]
- Smedman, A.-S.; Tjernström, M.; Högström, U. Analysis of the Turbulence Structure of a Marine Low-level Jet. Bound.-Layer Meteorol. 1993, 66, 105–126. [Google Scholar] [CrossRef]
- Dörenkämper, M.; Optis, M.; Monahan, A.; Steinfeld, G. On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions. Bound.-Layer Meteorol. 2015, 155, 459–482. [Google Scholar] [CrossRef]
- Emeis, S. Upper limit for wind shear in stably stratified conditions expressed in terms of a bulk Richardson number. Meteorol. Z. 2017, 26, 421–430. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Cañadillas, B.; Neumann, T.; Beeck, J. Turbulent fluxes, stability and shear in the offshore environment: Mesoscale modelling and field observations at FINO1. J. Renew. Sustain. Energy 2012, 4, 063136. [Google Scholar] [CrossRef]
- Leiding, T.; Tinz, B.; Gates, L.; Rosenhagen, G.; Herklotz, K.; Senet, C.; Outzen, O.; Lindenthal, A.; Neumann, T.; Frühmann, R.; et al. Standardization and Comparative Analysis the Meteorological FINO Measurement Data (FINO 123). Project Report, Grant Number: 0325508. 2016. Available online: https://www.dwd.de/DE/klimaumwelt/klimaforschung/klimaueberwachung/finowind/finodoku/abschlussbericht_pdf.pdf?__blob=publicationFile&v=3 (accessed on 1 April 2022).
- Emeis, S.; Siedersleben, S.; Lampert, A.; Platis, A.; Bange, J.; Djath, B.; Schulz-Stellenfleth, J.; Neumann, T. Exploring the wakes of large offshore wind farms. J. Phys. Conf. Ser. 2016, 753, 092014. [Google Scholar] [CrossRef] [Green Version]
- Kalverla, P.; Steeneveld, G.-J.; Ronda, R.J.; Holtslag, A.A.M. An pbservational climatology of anomalous wind events at offshore meteomast IJmuiden (North Sea). J. Wind Eng. Ind. Aerodyn. 2017, 165, 86–99. [Google Scholar] [CrossRef]
- Coelingh, J.P.; van Wijk, A.J.M.; Holtslag, A.A.M. Analysis of wind speed observations over the North Sea. J. Wind Eng. Ind. Aerodyn. 1996, 61, 51–69. [Google Scholar] [CrossRef]
- Platis, A.; Siedersleben, S.; Bange, J.; Lampert, A.; Bärfuss, K.; Hankers, R.; Cañadillas, B.; Foreman, R.; Schulz-Stellenfleth, J.; Djath, B.; et al. First in situ evidence of wakes in the far field behind offshore wind farms. Sci. Rep. 2018, 8, 2163. [Google Scholar] [CrossRef]
- Djath, B.; Schulz-Stellenfleth, J.; Cañadillas, B. Impact of atmospheric stability on X-band and C-band synthetic aperture radar imagery of offshore windpark wakes. J. Renew. Sustain. Energy 2018, 10, 043301. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, M.B.; Hasager, C.B. Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ. 2005, 98, 251–268. [Google Scholar] [CrossRef]
- Li, X.-M.; Lehner, S. Observation of TerraSAR-X for studies on offshore wind turbine wake in near and far fields. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Sandu, I.; Beljaars, A.; Bechtold, P.; Mauritsen, T.; Balsamo, G. Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J. Adv. Model. Earth Syst. 2013, 5, 117–133. [Google Scholar] [CrossRef]
- Openwind Theoretical Basis and Validation v.1.3. 2010. Available online: https://www.awstruepower.com/assets/OpenWindTheoryAndValidation_v1p3_Apr2010.pdf (accessed on 1 April 2022).
- Hassan, G. WindFarmer Theory Manual. 2009. Available online: http://www.ccpo.odu.edu/~klinck/Reprints/PDF/garradhassan2009.pdf (accessed on 1 April 2022).
- IEC 61400-12-1:2017; Wind Energy Generation Systems—Part 12-1: Power Performance Measurements of Electricity Producing Wind Turbines. International Electrotechnical Commission: Geneva, Switzerland, 2017.
- Wagner, R.; Antoniou, I.; Pedersen, S.M.; Courtney, M.; Jorgensen, H.E. The influence of the Wind Speed Profile on Wind Turbine Performance Measurements. Wind Energy 2009, 12, 348–362. [Google Scholar] [CrossRef]
- Eecen, P.J.; Wagenaar, J.W.; Stefanatos, N.; Pedersen, T.F.; Wagner, R.; Hansen, K.S. Final Report UPWIND. 2011. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5615242/UPWIND+1A2+METROLOGY.pdf (accessed on 1 April 2022).
- Wagner, R.; Courtney, M.; Gottschall, J.; Lindelow, P. Accounting for the speed shear in wind turbine power performance measurement. Wind Energy 2011, 14, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Paulsen, U.S.; Wagner, R. IMPER: Characterization of the Wind Field over a Large Wind Turbine Rotor; Final Report; DTU: Roskilde, Denmark, 2012; ISSN 0106-2840. ISBN 978-87-92896-00-1. Available online: http://orbit.dtu.dk/fedora/obiects/orbit:110344/datastreams/file7653538/content (accessed on 1 April 2022).
- Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St Martin, C.; Tüxen, E.; Wagenaar, J.W. Rotor equivalent wind speed for power curve measurement—Comparative exercise for IEA Wind Annex 32. J. Phys. Conf. Ser. 2014, 524, 012108. Available online: http://stacks.iop.org/1742-6596/524/i=1/a=012108 (accessed on 1 April 2022). [CrossRef]
- Gutierrez, W.; Araya, G.; Kiliyanpilakkil, P.; Ruiz-Columbie, A.; Tutkun, M.; Castillo, L. Structural impact assessment of low level jets over wind turbines. J. Renew. Energy 2016, 8, 023308. [Google Scholar] [CrossRef]
- Doosttalab, A.; Siguenza-Alvaro, D.; Pulletikurthi, V.; Jin, Y.; Bocanegra Evans, H.; Chamorro, L.P.; Castillo, L. Interaction of low-level jets with wind turbines: On the basic mechanisms for enhanced performance. J. Renew. Sustain. Energy 2020, 12, 053301. [Google Scholar] [CrossRef]
- Bärfuss, K.; Hankers, R.; Bitter, M.; Feuerle, T.; Schulz, H.; Rausch, T.; Platis, A.; Bange, J.; Lampert, A. In-Situ Airborne Measurements of Atmospheric and Sea Surface Parameters Related to Offshore Wind Parks in the German Bight; PANGAEA: Bremen, Germany, 2019. [Google Scholar] [CrossRef]
- Lampert, A.; Bärfuss, K.; Platis, A.; Siedersleben, S.; Djath, B.; Cañadillas, B.; Hankers, R.; Bitter, M.; Feuerle, T.; Schulz, H.; et al. In-Situ airborne measurements of atmospheric and sea surface parameters related to offshore wind parks in the German Bight. Earth Syst. Sci. Data 2020, 12, 935–946. [Google Scholar] [CrossRef]
- Djath, B.; Schulz-Stellenfleth, J.; Cañadillas, B. Study of Coastal Effects Relevant for Offshore Wind Energy Using Spaceborne Synthetic Aperture Radar (SAR). Remote Sens. 2022, 14, 1688. [Google Scholar] [CrossRef]
- Cañadillas, B.; Westerhellweg, A.; Neumann, T. Testing the Performance of a Ground-Based Wind LiDAR System, DEWI Mag. 2011. Available online: https://www.researchgate.net/publication/312786447 (accessed on 1 April 2022).
- Background Map and Picture Material from Wikipedia Authors NordNordWest, San Jose, and Carsten Steger under Creative Commons License. Available online: https://creativecommons.org/licenses/by-sa/3.0/de/legalcode (accessed on 1 April 2022).
- Siedersleben, S.K.; Platis, A.; Lundquist, J.K.; Lampert, A.; Bärfuss, K.; Cañadillas, B.; Djath, B.; Schulz-Stellenfleth, J.; Neumann, T.; Bange, J.; et al. Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric Flow Models with Aircraft Measurements. Meteorol. Z. 2018. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y. Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model with Condensation Physics: Its Design and Verification. Bound.-Layer Meteorol. 2004, 112, 1–31. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of Orography-Induced Turbulence in a Mesobeta—Scale Model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Ziemann, A.; Gálvez Arboleda, A.; Lampert, A. Comparison of wind lidar data and numerical simulations of the low-level jet at a grassland site. Energies 2020, 13, 6264. [Google Scholar] [CrossRef]
- Hsu, S.A.; Meindl, E.A.; Gilhousen, D.B. Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability at Sea. J. Appl. Meteorol. 1994, 33, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Aghbalou NCharki, A.; Elazzouzi, S.R.; Reklaoui, K. A probabilistic assessmente approach for wind turbine-sit matching. Electr. Power Energy Syst. 2018, 103, 497–510. [Google Scholar] [CrossRef]
- Corsmeier, U.; Kalthoff, N.; Kolle, O.; Kotzian, M.; Fiedler, F. Ozone concentration jump in the stable nocturnal boundary layer during a LLJ-event. Atmos. Environ. 1997, 31, 1977–1989. [Google Scholar] [CrossRef]
- Rausch, T.; Schuchard, M.; Cañadillas, B.; Lampert, A. One year measurements of vertical profiles of wind speed and wind direction from 40 to 500 m at Heligoland, German Bight, North Sea, Germany. PANGAEA 2020. [Google Scholar] [CrossRef]
ID (Location) | Latitude | Longitude | Data Period |
---|---|---|---|
HL (Heligoland) | N | E | 24 March 2017–23 March 2018 |
NO (Norderney) | N | E | 9 August 2019–8 August 2020 |
FI (FINO1) | N | E | 1 April 2017–31 March 2018 |
AV (Alpha-Ventus) | N | E | 1 April 2017–12 December 2017 |
SPO (St. Peter-Ording) | N | E | 23 May 2017–19 June 2017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rausch, T.; Cañadillas, B.; Hampel, O.; Simsek, T.; Tayfun, Y.B.; Neumann, T.; Siedersleben, S.; Lampert, A. Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight. Atmosphere 2022, 13, 839. https://doi.org/10.3390/atmos13050839
Rausch T, Cañadillas B, Hampel O, Simsek T, Tayfun YB, Neumann T, Siedersleben S, Lampert A. Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight. Atmosphere. 2022; 13(5):839. https://doi.org/10.3390/atmos13050839
Chicago/Turabian StyleRausch, Thomas, Beatriz Cañadillas, Oliver Hampel, Tayfun Simsek, Yilmaz Batuhan Tayfun, Thomas Neumann, Simon Siedersleben, and Astrid Lampert. 2022. "Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight" Atmosphere 13, no. 5: 839. https://doi.org/10.3390/atmos13050839
APA StyleRausch, T., Cañadillas, B., Hampel, O., Simsek, T., Tayfun, Y. B., Neumann, T., Siedersleben, S., & Lampert, A. (2022). Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight. Atmosphere, 13(5), 839. https://doi.org/10.3390/atmos13050839