Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Data Collection and Statistical Analysis
2.3. COVID-19 Lockdown Phases
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHO | World Health Organization |
PM | Particulate matter 10 micrometers or less in diameter |
PM | Particulate matter 2.5 micrometers or less in diameter |
CO | Carbon Monoxide |
O | Ozone |
BC | Black Carbon |
NO | Nitrogen Dioxide |
AQI | Air Quality Index |
SO | Sulfur Dioxide |
BL | Before Lockdown |
DL | During Lockdown |
PL | Partial Lockdown |
References
- WHO World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 7 January 2021).
- Salmon Ceron, D.; Bartier, S.; Hautefort, C.; Nguyen, Y.; Nevoux, J.; Hamel, A.L.; Camhi, Y.; CanouÃ-Poitrine, F.; Verillaud, B.; Slama, D.; et al. Self-reported loss of smell without nasal obstruction to identify COVID-19. The multicenter Coranosmia cohort study. J. Infect. 2020, 81, 614–620. [Google Scholar] [CrossRef]
- Pollán, M.; Perez-Gomez, B.; Pastor-Barriuso, R.; Oteo, J.; Hernán, M.; Pérez-Olmeda, M.; Sanmartín, J.; Fernandez-Garcia, A.; Cruz, I.; Larrea, N.; et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide, population-based seroepidemiological study. Lancet 2020, 396, 535–544. [Google Scholar] [CrossRef]
- Lipfert, F.W.; Wyzga, R.E. COVID-19 and the Environment, Review and Analysis. Environments 2021, 8, 42. [Google Scholar] [CrossRef]
- Skirienė, A.F.; Stasiškienė, Z. COVID-19 and Air Pollution: Measuring Pandemic Impact to Air Quality in Five European Countries. Atmosphere 2021, 12, 290. [Google Scholar] [CrossRef]
- Lovrić, M.; Pavlović, K.; Vuković, M.; Grange, S.K.; Haberl, M.; Kern, R. Understanding the true effects of the COVID-19 lockdown on air pollution by means of machine learning. Environ. Pollut. 2021, 274, 115900. [Google Scholar] [CrossRef]
- Mandal, I.; Pal, S. COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas. Sci. Total Environ. 2020, 732, 139281. [Google Scholar] [CrossRef]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean. Prod. 2021, 291, 125806. [Google Scholar] [CrossRef]
- Anil, I.; Alagha, O. The impact of COVID-19 lockdown on the air quality of Eastern Province, Saudi Arabia. Air Qual. Atmos. Health 2021, 14, 117–128. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Cui, H.; Wang, T.; Zhang, C.; Yun, K. Air pollution and critical air pollutant assessment during and after COVID-19 lockdowns: Evidence from pandemic hotspots in China, the Republic of Korea, Japan, and India. Atmos. Pollut. Res. 2021, 12, 316–329. [Google Scholar] [CrossRef]
- Ju, M.J.; Oh, J.; Choi, Y.H. Changes in air pollution levels after COVID-19 outbreak in Korea. Sci. Total Environ. 2021, 750, 141521. [Google Scholar] [CrossRef]
- Toro, A.R.; Catalán, F.; Urdanivia, F.R.; Rojas, J.P.; Manzano, C.A.; Seguel, R.; Gallardo, L.; Osses, M.; Pantoja, N.; Leiva-Guzman, M.A. Air pollution and COVID-19 lockdown in a large South American city: Santiago Metropolitan Area, Chile. Urban Clim. 2021, 36, 100803. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2021, 271, 116298. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Singh, R.P. Decline in PM2.5 concentrations over major cities around the world associated with COVID-19. Environ. Res. 2020, 187, 109634. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Xu, H.; Wang, Z.; Gu, Y.; Liu, Z.; Zhang, H.; Zhang, T.; Wang, Q.; Zhang, Q.; Liu, S.; et al. Quantifying Air Pollutant Variations during COVID-19 Lockdown in a Capital City in Northwest China. Atmosphere 2021, 12, 788. [Google Scholar] [CrossRef]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 116011. [Google Scholar] [CrossRef]
- Higham, J.; Acosta Ramirez, C.; Green, M.; Morse, A. UK COVID-19 Lockdown: 100 days of air pollution reduction. Air Qual. Atmos. Health 2021, 14, 325–332. [Google Scholar] [CrossRef]
- Tsou, I.; Liew, C.; Tan, B.P.; Chou, H.; Wong, S.; Loke, K.; Quah, R.; Tan, A.; Tay, K. Planning and coordination of the radiological response to the coronavirus disease 2019 (COVID-19) pandemic: The Singapore experience. Clin. Radiol. 2020, 75, 415–422. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [Google Scholar] [CrossRef]
- Chadwick, E.; Le, K.; Pei, Z.; Sayahi, T.; Rapp, C.; Butterfield, A.; Kelly, K. Technical note: Understanding the effect of COVID-19 on particle pollution using a low-cost sensor network. J. Aerosol Sci. 2021, 155, 105766. [Google Scholar] [CrossRef]
- Dang, H.A.H.; Trinh, T.A. Does the COVID-19 lockdown improve global air quality? New cross-national evidence on its unintended consequences. J. Environ. Econ. Manag. 2021, 105, 102401. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc. Natl. Acad. Sci. USA 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Coskuner, G.; Jassim, M.S.; Aina, Y.A.; Ali, A.; Mayfield, M. Changes in Air Quality Associated with Mobility Trends and Meteorological Conditions during COVID-19 Lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Kumar, S. Effect of meteorological parameters on spread of COVID-19 in India and air quality during lockdown. Sci. Total Environ. 2020, 745, 141021. [Google Scholar] [CrossRef]
- Ghosal, R.; Saha, E. Impact of the COVID-19 induced lockdown measures on PM2.5 concentration in USA. Atmos. Environ. 2021, 254, 118388. [Google Scholar] [CrossRef]
- Páez-Osuna, F.; Valencia-Castañeda, G.; Rebolledo, U.A. The link between COVID-19 mortality and PM2.5 emissions in rural and medium-size municipalities considering population density, dust events, and wind speed. Chemosphere 2022, 286, 131634. [Google Scholar] [CrossRef]
- Ibarra-Espinosa, S.; Dias de Freitas, E.; Ropkins, K.; Dominici, F.; Rehbein, A. Negative-Binomial and quasi-poisson regressions between COVID-19, mobility and environment in São Paulo, Brazil. Environ. Res. 2022, 204, 112369. [Google Scholar] [CrossRef]
- Marquès, M.; Correig, E.; Ibarretxe, D.; Anoro, E.; Antonio Arroyo, J.; Jericó, C.; Borrallo, R.M.; Miret, M.; Näf, S.; Pardo, A.; et al. Long-term exposure to PM10 above WHO guidelines exacerbates COVID-19 severity and mortality. Environ. Int. 2022, 158, 106930. [Google Scholar] [CrossRef]
- Bhatti, U.A.; Zeeshan, Z.; Nizamani, M.M.; Bazai, S.; Yu, Z.; Yuan, L. Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere 2022, 288, 132569. [Google Scholar] [CrossRef]
- Garcia, E.; Marian, B.; Chen, Z.; Li, K.; Lurmann, F.; Gilliland, F.; Eckel, S.P. Long-term air pollution and COVID-19 mortality rates in California: Findings from the Spring/Summer and Winter surges of COVID-19. Environ. Pollut. 2022, 292, 118396. [Google Scholar] [CrossRef]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [Green Version]
- Rhee, J.; Dominici, F.; Zanobetti, A.; Schwartz, J.; Wang, Y.; Di, Q.; Balmes, J.; Christiani, D.C. Impact of Long-Term Exposures to Ambient PM2.5 and Ozone on ARDS Risk for Older Adults in the United States. Chest 2019, 156, 71–79. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.; Saldiva, P.H.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Rovira, J. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ. Res. 2020, 187, 109650. [Google Scholar] [CrossRef] [PubMed]
- SEDUMA (Secretaría de Desarrollo Urbano y Medio Ambiente del Gobierno del Estado de Tamaulipas). Programa de Gestión Para Mejorar la Calidad del Aire del Estado de Tamaulipas 2018–2027. 2018. Available online: https://www.gob.mx/cms/uploads/attachment/file/399257/28_ProAire_Tamaulipas.pdf (accessed on 24 October 2021).
- NOM (Norma Oficial Mexicana). NORMA Oficial Mexicana NOM-025-SSA1-2014-Salud Ambiental. Secretaría de Salud. 2014. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5357042&fecha=20/08/2014 (accessed on 1 October 2021).
- Zaręba, M.; Danek, T. Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol Air Qual. Res. 2022, 22, 210275. [Google Scholar] [CrossRef]
- Rudke, A.P.; de Almeida, D.S.; Alves, R.A.; Beal, A.; Martins, L.D.; Martins, J.A.; Hallak, R.; de Almeida Albuquerque, T.T. Impacts of Strategic Mobility Restrictions Policies during 2020 COVID-19 Outbreak on Brazil’s Regional Air Quality. Aerosol Air Qual. Res. 2022, 22, 210351. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Z.; He, Z.; Li, X.; Meng, J.; Hou, Z.; Yang, J. Changes in Air Quality from the COVID to the Post-COVID Era in the Beijing-Tianjin-Tangshan Region in China. Aerosol Air Qual. Res. 2021, 21, 210270. [Google Scholar] [CrossRef]
- Chossière, G.P.; Xu, H.; Dixit, Y.; Isaacs, S.; Eastham, S.D.; Allroggen, F.; Speth, R.L.; Barrett, S.R.H. Air pollution impacts of COVID-19–related containment measures. Sci. Adv. 2021, 7, eabe1178. [Google Scholar] [CrossRef]
- Libelium. Smart Environment PRO—Waspmote Gases PRO v30 Board. 2019. Available online: https://development.libelium.com/gases_pro_sensor_guide/sensors#particle-matter-pm1-pm2.5-pm10-dust-sensor (accessed on 17 March 2022).
- Sousan, S.; Regmi, S.; Park, Y.M. Laboratory Evaluation of Low-Cost Optical Particle Counters for Environmental and Occupational Exposures. Sensors 2021, 21, 4146. [Google Scholar] [CrossRef]
- AQMD (South Coast Air Quality Management District). Laboratory Evaluation Alphasense OPC-N3 Sensor. 2018. Available online: http://www.aqmd.gov/aq-spec/sensordetail/alphasense (accessed on 17 March 2022).
- Danek, T.; Zaręba, M. The Use of Public Data from Low-Cost Sensors for the Geospatial Analysis of Air Pollution from Solid Fuel Heating during the COVID-19 Pandemic Spring Period in Krakow, Poland. Sensors 2021, 21, 5208. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, M.; Guo, F.; Wei, F.; Yu, Z.; Gao, K.; Jin, M.; Wang, J.; Chen, K. Associations between air pollution and COVID-19 epidemic during quarantine period in China. Environ. Pollut. 2021, 268, 115897. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N.; Baschir, L.A.; Tenciu, D.V. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. Process. Saf. Environ. Prot. 2021, 152, 583–600. [Google Scholar] [CrossRef]
- Stratoulias, D.; Nuthammachot, N. Air quality development during the COVID-19 pandemic over a medium-sized urban area in Thailand. Sci. Total Environ. 2020, 746, 141320. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.L.; Smith, V.A.; Kahler, D.M. Pittsburgh Air Pollution Changes During the COVID-19 Lockdown. Environ. Adv. 2022, 7, 100149. [Google Scholar] [CrossRef]
- Pérez-Martínez, P.J.; Magalhães, T.; Maciel, I.; de Miranda, R.M.; Kumar, P. Effects of the COVID-19 Pandemic on the Air Quality of the Metropolitan Region of São Paulo: Analysis Based on Satellite Data, Monitoring Stations and Records of Annual Average Daily Traffic Volumes on the Main Access Roads to the City. Atmosphere 2022, 13, 52. [Google Scholar] [CrossRef]
- Al-Hemoud, A.; Al-Khayat, A.; Al-Dashti, H.; Li, J.; Alahmad, B.; Koutrakis, P. PM2.5 and PM10 during COVID-19 lockdown in Kuwait: Mixed effect of dust and meteorological covariates. Environ. Challenges 2021, 5, 100215. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Wannaz, E.D.; Valdivia, A.E.L.; Larico, J.A.R.; Peña, J.S.; Huillca, C.V. PM10 correlates with COVID-19 infections 15 days later in Arequipa, Peru. Environ. Sci. Pollut. Res. Int. 2021, 28, 39648–39654. [Google Scholar] [CrossRef]
Before Lockdown (BL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR)1 | (IQR) | (IQR) | ||||||||||
Total | 30 (7) | 5 | 42 | 24 (13) | 17 | 38 | 23 (15) | 3 | 49 | −20.00 | −23.33 | −4.16 |
AQIoT02 | 26 (2) | 8 | 31 | 19 (2) | 17 | 22 | 22 (16) | 3 | 45 | −26.92 | −15.38 | 15.79 |
AQIoT03 | 29 (5) | 16 | 36 | 29 (5) | 24 | 33 | 22 (15) | 3 | 49 | 0.00 | −24.14 | −24.14 |
AQIoT04 | 32 (3) | 26 | 38 | 19 (2) | 17 | 23 | 23 (14) | 6 | 48 | −40.63 | −28.13 | 21.05 |
AQIoT05 | 36 (12) | 5 | 42 | 33 (3) | 29 | 38 | 24 (15) | 4 | 48 | −8.33 | −33.33 | −27.27 |
During Lockdown (DL) | ||||||||||||
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR) | (IQR) | (IQR) | ||||||||||
Total | 27 (7) | 5 | 41 | 12 (6) | 6 | 27 | 23 (23) | 5 | 52 | −55.56 | −14.81 | 91.67 |
AQIoT02 | 25 (6) | 5 | 32 | 10 (2) | 7 | 14 | 19 (24) | 5 | 47 | −60.00 | −24.00 | 90.00 |
AQIoT03 | 30 (8) | 14 | 40 | 15 (2) | 10 | 19 | 23 (25) | 6 | 51 | −50.00 | −23.33 | 53.33 |
AQIoT04 | 26 (7) | 19 | 41 | 9 (2) | 6 | 13 | 22 (22) | 7 | 52 | −65.38 | −15.38 | 144.44 |
AQIoT05 | 28 (9) | 9 | 40 | 19 (6) | 14 | 27 | 24 (24) | 6 | 52 | −32.14 | −14.29 | 26.32 |
Partial Lockdown (PL) | ||||||||||||
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR) | (IQR) | (IQR) | ||||||||||
Total | 28 (8) | 7 | 40 | 13 (6) | 7 | 21 | 18 (13) | 3 | 50 | −53.57 | −35.71 | 38.46 |
AQIoT02 | 28 (8) | 7 | 35 | 12 (2) | 9 | 14 | 15 (11) | 3 | 40 | −57.14 | −46.43 | 25.00 |
AQIoT03 | 28 (11) | 8 | 37 | 17 (2) | 13 | 20 | 17 (14) | 4 | 46 | −39.29 | −39.29 | 0.00 |
AQIoT04 | 26 (4) | 17 | 31 | 11 (2) | 7 | 13 | 19 (15) | 6 | 50 | −57.69 | −26.92 | 72.73 |
AQIoT05 | 31 (7) | 20 | 40 | 17 (5) | 12 | 21 | 20 (11) | 3 | 46 | −45.16 | −35.48 | 17.65 |
Before Lockdown (BL) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR)1 | (IQR) | (IQR) | ||||||||||
Total | 33 (9) | 8 | 44 | 25 (12) | 18 | 40 | 26 (20) | 3 | 61 | −24.24 | −21.21 | 4.00 |
AQIoT02 | 29 (3) | 11 | 34 | 21 (3) | 18 | 24 | 24 (19) | 4 | 56 | −27.59 | −17.24 | 14.29 |
AQIoT03 | 32 (6) | 18 | 39 | 33 (5) | 25 | 36 | 25 (21) | 3 | 61 | 3.13 | −21.88 | −24.24 |
AQIoT04 | 37 (3) | 33 | 42 | 22 (2) | 20 | 25 | 26 (18) | 7 | 60 | −40.54 | −29.73 | 18.18 |
AQIoT05 | 38 (12) | 8 | 44 | 35 (2) | 32 | 40 | 26 (21) | 5 | 60 | −7.89 | −31.58 | −25.71 |
During Lockdown (DL) | ||||||||||||
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR) | (IQR) | (IQR) | ||||||||||
Total | 29 (6) | 9 | 43 | 13 (8) | 7 | 28 | 26 (29) | 5 | 65 | −55.17 | −10.34 | 100.00 |
AQIoT02 | 28 (6) | 9 | 35 | 11 (2) | 8 | 15 | 23 (29) | 5 | 59 | −60.71 | −17.86 | 109.09 |
AQIoT03 | 32 (7) | 16 | 41 | 17 (2) | 11 | 21 | 29 (32) | 6 | 63 | −46.88 | −9.38 | 70.59 |
AQIoT04 | 30 (5) | 22 | 43 | 10 (2) | 7 | 14 | 27 (28) | 9 | 65 | −66.67 | −10.00 | 170.00 |
AQIoT05 | 31 (9) | 11 | 42 | 20 (6) | 15 | 28 | 26 (30) | 7 | 63 | −35.48 | −16.13 | 30.00 |
Partial Lockdown (PL) | ||||||||||||
STATION | 2019 | 2020 | 2021 | Relative Change (%) | ||||||||
Median | Min | Max | Median | Min | Max | Median | Min | Max | 2019–2020 | 2019–2021 | 2020–2021 | |
(IQR) | (IQR) | (IQR) | ||||||||||
Total | 31 (7) | 9 | 42 | 15 (6) | 9 | 23 | 20 (14) | 3 | 60 | −51.61 | −35.48 | 33.33 |
AQIoT02 | 31 (9) | 9 | 38 | 14 (2) | 11 | 16 | 16 (12) | 3 | 48 | −54.84 | −48.39 | 14.29 |
AQIoT03 | 30 (10) | 11 | 40 | 19 (2) | 17 | 22 | 18 (17) | 5 | 57 | −36.67 | −40.00 | −5.26 |
AQIoT04 | 31 (5) | 21 | 36 | 13 (2) | 9 | 15 | 21 (18) | 7 | 60 | −58.06 | −32.26 | 61.54 |
AQIoT05 | 33 (7) | 22 | 42 | 18 (5) | 14 | 23 | 22 (13) | 4 | 56 | −45.45 | −33.33 | 22.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-Hernández, B.A.; Tello-Leal, E. Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico. Atmosphere 2022, 13, 827. https://doi.org/10.3390/atmos13050827
Macías-Hernández BA, Tello-Leal E. Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico. Atmosphere. 2022; 13(5):827. https://doi.org/10.3390/atmos13050827
Chicago/Turabian StyleMacías-Hernández, Bárbara A., and Edgar Tello-Leal. 2022. "Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico" Atmosphere 13, no. 5: 827. https://doi.org/10.3390/atmos13050827
APA StyleMacías-Hernández, B. A., & Tello-Leal, E. (2022). Analysis of Particulate Matter Concentration Changes before, during, and Post COVID-19 Lockdown: A Case Study from Victoria, Mexico. Atmosphere, 13(5), 827. https://doi.org/10.3390/atmos13050827