Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Subsection Results of Global Models
3.2. Results of Geographical Weighted Regression Models
3.3. Estimation of the Turning Points of the EKCs for Haze
4. Conclusions and Policy Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, L.J. Urban transformation in China, 1949–2000: A review and research agenda. Environ. Plan A 2002, 34, 1545–1569. [Google Scholar] [CrossRef]
- Kim, Y. Spatial analysis of factors affecting location decisions of Korean companies in China. Reg. Sci. Policy Pract. 2019, 11, 383–401. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva, Switzerland, 2016; Available online: https://apps.who.int/iris/handle/10665/250141 (accessed on 15 April 2022).
- Zhuang, X.; Wang, Y.; He, H.; Liu, J.; Wang, X.; Zhu, T.; Ge, M.; Zhou, J.; Tang, G.; Ma, J. Haze insights and mitigation in China: An overview. J. Environ. Sci. 2014, 26, 2–12. [Google Scholar] [CrossRef]
- Quan, J.; Zhang, Q.; He, H.; Liu, J.; Huang, M.; Jin, H. Analysis of the formation of fog and haze in North China Plain (NCP). Atmos. Chem. Phys. 2011, 11, 8205–8214. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Guttikunda, S.K.; Carmichael, G.R.; Wang, Y.; Liu, Z.; Stanier, C.O.; Saide, P.E.; Yu, M. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci. Total Environ. 2015, 511, 553–561. [Google Scholar] [CrossRef]
- Jalil, A.; Mahmud, S.F. Environment Kuznets curve for CO2 emissions: A cointegration analysis for China. Energy Policy 2009, 37, 5167–5172. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Niu, X.; Wang, J. Impacts of haze pollution on China’s tourism industry: A system of economic loss analysis. J. Environ. Manag. 2020, 295, 113051. [Google Scholar] [CrossRef]
- Long, X.; Naminse, E.Y.; Du, J.; Zhuang, J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sustain. Energy Rev. 2015, 52, 680–688. [Google Scholar] [CrossRef]
- Wang, Y.; Han, R.; Kubota, J. Is there an environmental Kuznets curve for SO2 emissions? A semi-parametric panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [Google Scholar] [CrossRef]
- Shen, J. A simultaneous estimation of environmental Kuznets curve: Evidence from China. China Econ. Rev. 2006, 17, 383–394. [Google Scholar] [CrossRef]
- Tao, S.; Zheng, T.; Lianjun, T. An empirical test of the environmental Kuznets curve in China: A panel cointegration approach. China Econ. Rev. 2008, 19, 381–392. [Google Scholar]
- Shu, L.; Fantang, Z.; Huaiyang, F.; Zhencheng, X. An empirical test of the environmental Kuznets curve in Guangdong Province, China. APCBEE Procedia 2012, 1, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Yuan, X.; Lai, Y.; Ma, C.; Ren, W. Research on interactive coupling mechanism and regularity between urbanization and atmospheric environment: A case study in Shandong Province, China. Stoch. Environ. Res. Risk Assess. 2012, 26, 887–898. [Google Scholar] [CrossRef]
- Song, M.-L.; Zhang, W.; Wang, S.-H. Inflection point of environmental Kuznets curve in Mainland China. Energy Policy 2013, 57, 14–20. [Google Scholar] [CrossRef]
- Du, G.; Liu, S.; Lei, N.; Huang, Y. A test of environmental Kuznets curve for haze pollution in China: Evidence from the penal data of 27 capital cities. J. Clean. Prod. 2018, 205, 821–827. [Google Scholar] [CrossRef]
- Xu, T. Investigating environmental Kuznets curve in China—Aggregation bias and policy implications. Energy Policy 2018, 114, 315–322. [Google Scholar] [CrossRef]
- Xie, Q.; Xu, X.; Liu, X. Is there an EKC between economic growth and smog pollution in China? New evidence from semiparametric spatial autoregressive models. J. Clean. Prod. 2019, 220, 873–883. [Google Scholar] [CrossRef]
- Pata, U.K.; Caglar, A.E. Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break. Energy 2021, 216, 119220. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.-M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Kim, Y.; Tanaka, K.; Ge, C. Estimating the provincial environmental Kuznets curve in China: A geographically weighted regression approach. Stoch. Environ. Res. Risk Assess. 2018, 32, 2147–2163. [Google Scholar] [CrossRef]
- Ma, Y.-R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Zeraibi, A.; Ahmed, Z.; Shehzad, K.; Murshed, M.; Nathaniel, S.P.; Mahmood, H. Revisiting the EKC hypothesis by assessing the complementarities between fiscal, monetary, and environmental development policies in China. Environ. Sci. Pollut. Res. 2022, 29, 23545–23560. [Google Scholar] [CrossRef] [PubMed]
- Chuai, X.; Huang, X.; Wang, W.; Wen, J.; Chen, Q.; Peng, J. Spatial econometric analysis of carbon emissions from energy consumption in China. J. Geogr. Sci. 2012, 22, 630–642. [Google Scholar] [CrossRef]
- Kim, Y.; Tanaka, K.; Zhang, X. A spatial analysis of the causal factors influencing China’s air pollution. Asian J. Atmos. Environ. 2017, 11, 194–201. [Google Scholar] [CrossRef]
- Brajer, V.; Mead, R.W.; Xiao, F. Searching for an environmental Kuznets curve in China’s air pollution. China Econ. Rev. 2011, 22, 383–397. [Google Scholar] [CrossRef]
- Fang, M.; Chan, C.K.; Yao, X. Managing air quality in a rapidly developing nation: China. Atmos. Environ. 2009, 43, 79–86. [Google Scholar] [CrossRef]
- Beşe, E.; Friday, H.S.; Özden, C. Coal consumption environmental Kuznets curve (EKC) in China and Australia: Evidence from ARDL model. J. Appl. Bus. Econ. 2020, 22, 25–36. [Google Scholar]
- Koshta, N.; Bashir, H.A.; Samad, T.A. Foreign trade, financial development, agriculture, energy consumption and CO2 emission: Testing EKC among emerging economies. Indian Growth Dev. Rev. 2020, 14, 50–80. [Google Scholar] [CrossRef]
- Stern, D.I. The rise and fall of the environmental Kuznets curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Kang, Y.Q.; Zhao, T.; Yang, Y.Y. Environmental Kuznets curve for CO2 emissions in China: A spatial panel data approach. Ecol. Indic. 2016, 63, 231–239. [Google Scholar] [CrossRef]
- Payus, C.M.; Syazni, M.N.; Sentian, J. Extended air pollution index (API) as tool of sustainable indicator in the air quality assessment: El-Nino events with climate change driven. Heliyon 2022, 8, e09157. [Google Scholar] [CrossRef]
- Dong, F.; Zhang, S.; Long, R.; Zhang, X.; Sun, Z. Determinants of haze pollution: An analysis from the perspective of spatiotemporal heterogeneity. J. Clean. Prod. 2019, 222, 768–783. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn (accessed on 15 April 2022).
- Wheeler, D.C. Geographically weighted regression. In Handbook of Regional Science; Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin/Heidelberg, Switzerland, 2014; pp. 1435–1459. [Google Scholar]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: Chichester, UK, 2002. [Google Scholar]
- Shi, T.; Zhang, W.; Zhou, Q.; Wang, K. Industrial structure, urban governance and haze pollution: Spatiotemporal evidence from China. Sci. Total Environ. 2020, 742, 139228. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Yang, Q.; Ni, Q.; Kim, Y. The impact of environmental regulation on employment: An empirical study of China’s Two Control Zone policy. Environ. Sci. Pollut. Res. 2019, 26, 26472–26487. [Google Scholar] [CrossRef]
- Zhang, K.; Dearing, J.A.; Tong, S.L.; Hughes, T.P. China’s degraded environment enters a new normal. Trends Ecol. Evol. 2016, 31, 175–177. [Google Scholar] [CrossRef]
- Liu, J. China’s renewable energy law and policy: A critical review. Renew. Sustain. Energy Rev. 2019, 99, 212–219. [Google Scholar] [CrossRef]
- Bekun, F.V. Mitigating emissions in India: Accounting for the role of real income, renewable energy consumption and investment in energy. Int. J. Energy Econ. Policy. 2022, 12, 188–192. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, D.; Hu, Z.; Chen, X. Decompositions of Taylor diagram and DISO performance criteria. Int. J. Climatol. 2021, 41, 5726–5732. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Chen, D.; Li, J. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
Variable | Unit | Obs. | Mean | Median | Maximum | Minimum | Std. Dev. |
---|---|---|---|---|---|---|---|
API | Index | 465 | 294.518 | 307.000 | 365.000 | 168.000 | 48.783 |
PGRP | 100 million CNY | 465 | 25,076.280 | 19,580.230 | 103,671.300 | 2742.070 | 19,679.650 |
TR | % | 465 | 13.929 | 3.600 | 100.220 | 0.001 | 22.425 |
PD | Person/m2 | 465 | 414.479 | 263.000 | 4349.000 | 2.000 | 621.088 |
Variable | Pool OLS | FE | RE | GLS |
---|---|---|---|---|
Intercept | 5.518 *** (1.167) | 6.356 *** (0.539) | 5.938 *** (0.376) | 5.675 *** (0.165) |
ln(PGRPit) | 0.156 (0.236) | −0.008 (0.078) | 0.032 (0.069) | 0.122 *** (0.034) |
ln(PGRPit)2 | −0.013 (0.007094) | −0.003 (0.004) | −0.005 (0.004) | −0.011 *** (0.002) |
ln(TRit) | 0.014 * (0.007) | 0.001 (0.004) | 0.001 (0.004) | 0.013 *** (0.001) |
ln(PDit) | −0.012 (0.009) | −0.059 (0.046) | −0.013 (0.019) | −0.011 *** (0.001) |
R2 | 0.168 | 0.090 | 0.150 | |
F-test/Breush–Pagan LM test | 210.19 *** | 2727.87 *** | ||
Pesaran’s test | 4.041 *** | 4.948 *** |
Variable | F | Diff of Criterion |
---|---|---|
Intercept | 68,192.880 *** | −3960.470 |
ln(PGRPit) | 250.132 *** | −1049.020 |
ln(PGRPit)2 | 1473.370 *** | −1915.418 |
ln(TRit) | 54.240 *** | −379.452 |
ln(PDit) | 1516.960 *** | −1548.354 |
Variable | Min | LQ | Med | UQ | Max |
---|---|---|---|---|---|
Intercept | 0.196 | 4.240 | 7.348 | 9.667 | 16.167 |
ln(PGRPit) | −1.585 | −0.726 | −0.206 | 0.443 | 1.120 |
ln(PGRPit)2 | −0.053 | −0.026 | 0.008 | 0.032 | 0.079 |
ln(TRit) | 0.031 | −1.099 | −0.074 | 0.013 | 0.622 |
ln(PDit) | −1.099 | −0.325 | 0.016 | 0.047 | 0.147 |
N | 465 | ||||
Adjusted R2 | 0.939 | ||||
AIC | −1461.025 |
Region | 2017 PGRP | Ln (2017 PGRP) | Turning Point | Ratio |
---|---|---|---|---|
Beijing | 128,994 | 11.768 | 2.944 | 1.334 |
Tianjin | 118,944 | 11.686 | 2.735 | 1.306 |
Shanghai | 126,634 | 11.749 | 1.205 | 1.114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdul-Rahim, A.S.; Kim, Y.; Yue, L. Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China. Atmosphere 2022, 13, 806. https://doi.org/10.3390/atmos13050806
Abdul-Rahim AS, Kim Y, Yue L. Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China. Atmosphere. 2022; 13(5):806. https://doi.org/10.3390/atmos13050806
Chicago/Turabian StyleAbdul-Rahim, Abdul Samad, Yoomi Kim, and Long Yue. 2022. "Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China" Atmosphere 13, no. 5: 806. https://doi.org/10.3390/atmos13050806
APA StyleAbdul-Rahim, A. S., Kim, Y., & Yue, L. (2022). Investigating Spatial Heterogeneity of the Environmental Kuznets Curve for Haze Pollution in China. Atmosphere, 13(5), 806. https://doi.org/10.3390/atmos13050806