Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1
Abstract
:1. Introduction
2. Model Description, Study Region, Data, and Methods
2.1. Model Description and Experimental Setup
2.2. Study Region, Observation Data, and Model Evaluation Methods
3. Results
3.1. Climatological Distribution of Summer Rainfall
3.2. Distribution of Interannual Variability of Summer Rainfall
3.3. Dominant Modes of Summer Rainfall and Their Variations
3.4. Relationship between ENSO and Summer Rainfall over Thailand
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Vitart, F.; Robertson, A.W. The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events. NPJ Clim. Atmos. Sci. 2018, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Dike, V.N.; Lin, Z.; Kece, F.; Langendijk, G.S.; Nath, D. Evaluation and multi-model projection of seasonal precipitation extremes over Central Asia based on CMIP6 simulations. Int. J. Climatol. 2022. [Google Scholar] [CrossRef]
- Nahar, J.; Johnson, F.; Sharma, A. Assessing the extent of non-stationary biases in GCMs. J. Hydrol. 2017, 549, 148–162. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yang, Y.-M.; Wang, B. Evaluation of NESMv3 and CMIP5 models’ performance on simulation of Asian-Australian monsoon. Atmosphere 2018, 9, 327. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, S.V.; Liu, J.; Nguyen, N.S.; Vu, M.T.; Liong, S.-Y. Assessment of CMIP5 historical simulations of rainfall over Southeast Asia. Theor. Appl. Climatol. 2017, 132, 989–1002. [Google Scholar] [CrossRef]
- Tang, W.; Lin, Z.-H.; Luo, L.-F. Assessing the seasonal predictability of summer precipitation over the Huaihe river basin with multiple APCC models. Atmos. Ocean. Sci. Lett. 2013, 6, 185–190. [Google Scholar] [CrossRef]
- Schmidli, J.; Frei, C.M.; Vidale, P.L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods. Int. J. Climatol. 2006, 26, 679–689. [Google Scholar] [CrossRef]
- Haarsma, R.J.; Roberts, M.J.; Vidale, P.L.; Senior, C.A.; Bellucci, A.; Bao, Q.; Chang, P.; Corti, S.; Fučkar, N.S.; Guemas, V.; et al. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 2016, 9, 4185–4208. [Google Scholar] [CrossRef] [Green Version]
- Hariadi, M.H.; Schrier, G.v.d.; Steeneveld, G.J.; Sopaheluwakan, A.; Tank, A.K.; Roberts, M.J.; Moine, M.P.; Bellucci, A.; Senan, R.; Tourigny, É.; et al. Evaluation of onset, cessation and seasonal precipitation of the Southeast Asia rainy season in CMIP5 regional climate models and HighResMIP global climate models. Int. J. Climatol. 2021, 42, 3007–3024. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, Z.L. An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. J. Clim. 2012, 25, 6271–6286. [Google Scholar] [CrossRef]
- Xin, X.; Wu, T.; Zhang, J.; Yao, J.; Fang, Y. Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon. Int. J. Climatol. 2020, 40, 6423–6440. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Guzman, S.M.; Dong, Z.; Tan, L. Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate 2020, 8, 108. [Google Scholar] [CrossRef]
- Komori, D.; Nakamura, S.; Kiguchi, M.; Nishijima, A.; Yamazaki, D.; Suzuki, S.; Kawasaki, A.; Oki, K.; Oki, T. Characteristics of the 2011 Chao Phraya River flood in Central Thailand. Hydrol. Res. Lett. 2012, 6, 41–46. [Google Scholar] [CrossRef]
- Limsakul, A.; Paengkaew, W.; Kummueang, A.; Limjirakan, S.; Suttamanuswong, B. PDSI-based variations of droughts and wet spells in Thailand: 1951–2005. EnvironmentAsia 2010, 4, 12–20. [Google Scholar]
- Gale, E.L.; Saunders, M.A. The 2011 Thailand flood: Climate causes and return periods. Weather 2013, 68, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Virdis, S.G.P.; Collins, M. Multivariate and multi-temporal analysis of meteorological drought in the northeast of Thailand. Weather Clim. Extrem. 2021, 34, 100399. [Google Scholar] [CrossRef]
- Singhrattna, N.; Rajagopalan, B.; Kumar, K.K.; Clark, M. Interannual and interdecadal variability of Thailand summer monsoon season. J. Clim. 2005, 18, 1697–1708. [Google Scholar] [CrossRef]
- Imada, Y.; Kanae, S.; Kimoto, M.; Watanabe, M.; Ishii, M. Predictability of Persistent Thailand Rainfall during the Mature Monsoon Season in 2011 Using Statistical Downscaling of CGCM Seasonal Prediction. Mon. Weather Rev. 2015, 143, 1166–1178. [Google Scholar] [CrossRef]
- Singhrattna, N.; Rajagopalan, B.; Clark, M.; Krishna Kumar, K. Seasonal forecasting of Thailand summer monsoon rainfall. Int. J. Climatol. 2005, 25, 649–664. [Google Scholar] [CrossRef] [Green Version]
- Supriyasilp, T.; Pongput, K. El Niño-Southern Oscillation and rainfall characteristics in Northern Thailand: Implications for adaptation in rainfed farms. Reg. Environ. Chang. 2021, 21, 123. [Google Scholar] [CrossRef]
- Chotamonsak, C.; Salathe, E.; Kreasuwan, J.; Chantara, S. Evaluation of precipitation simulations over Thailand using a WRF regional climate model. Chiang Mai J. Sci. 2012, 39, 623–628. [Google Scholar]
- Torsri, K.; Octaviani, M.; Manomaiphiboon, K.; Towprayoon, S. Regional mean and variability characteristics of temperature and precipitation over Thailand in 1961–2000 by a regional climate model and their evaluation. Theor. Appl. Climatol. 2012, 113, 289–304. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, E.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2014, 42, 1999–2018. [Google Scholar] [CrossRef]
- Dieppois, B.; Rouault, M.; New, M. The impact of ENSO on Southern African rainfall in CMIP5 ocean atmosphere coupled climate models. Clim. Dyn. 2015, 45, 2425–2442. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Jin, F.-F.; Stuecker, M.F. Dynamics for El Niño-La Niña asymmetry constrain equatorial-Pacific warming pattern. Nat. Commun. 2020, 11, 4230. [Google Scholar] [CrossRef]
- Dong, X.; Xue, F.; Zhang, H.; Zeng, Q.-C. Evaluation of surface air temperature change over China and the globe during the twentieth century in IAP AGCM4.0. Atmos. Ocean. Sci. Lett. 2012, 5, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Adeniyi, M.O.; Lin, Z.; Zhang, H. Evaluation of the performance of IAP-AGCM4.1 in simulating the climate of West Africa. Theor. Appl. Climatol. 2018, 136, 1419–1434. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Yu, Z.; Zhang, H.; Wu, C.-L. Quantifying the attribution of model bias in simulating summer hot days in China with IAP AGCM 4.1. Atmos. Ocean. Sci. 2016, 9, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.-B.; Lin, Z.-H.; Zhang, H. The relationship between the East Asian Subtropical Westerly Jet and summer precipitation over East Asia as simulated by the IAP AGCM4.0. Atmos. Ocean. Sci. Lett. 2014, 7, 487–492. [Google Scholar] [CrossRef]
- Su, T.; Xue, F.; Zhang, H. Simulating the intraseasonal variation of the East Asian summer monsoon by IAP AGCM4.0. Adv. Atmos. Sci. 2014, 31, 570–580. [Google Scholar] [CrossRef]
- Bridhikitti, A. Connections of ENSO/IOD and aerosols with Thai rainfall anomalies and associated implications for local rainfall forecasts. Int. J. Climatol. 2013, 33, 2836–2845. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Zeng, Q.-C. Sensitivity of simulated climate to two atmospheric models: Interpretation of differences between dry models and moist models. Mon. Weather Rev. 2013, 141, 1558–1576. [Google Scholar] [CrossRef]
- Zeng, Q.-C.; Zhang, X.-H.; Liang, X.-Z.; Yuan, C.-G.; Chen, S.-F. Documentation of IAP (Institute of Atmospheric Physics) Two-Level Atmospheric General Circulation Model; Institute of Atmospheric Physics, Chinese Academy of Sciences: Beijing, China, 1989. [Google Scholar]
- Bi, X. IAP 9L AGCM and Climate Simulation. Ph.D. Dissertation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 1993; 210p. (In Chinese). [Google Scholar]
- Liang, X. Description of a nine-level grid point atmospheric general circulation model. Adv. Atmos. Sci. 1996, 13, 269–298. [Google Scholar] [CrossRef]
- Zuo, R. Development of New Generation Grid Point Atmospheric General Circulation Model with High Resolution. Ph.D. Thesis, China People’s Liberation Army University of Science and Technology, Changsha, China, 2003; 328p. (In Chinese). [Google Scholar]
- Zhang, H. Development of IAP Atmospheric General Circulation Model Version 4.0 and Its Climate Simulations. Ph.D. Thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China, 2009; 194p. (In Chinese). [Google Scholar]
- Phillips, N.A. A coordinate system having some special advantages for numerical forecasting. J. Meteorol. 1957, 14, 184–185. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, A.; Lamb, V.R. Computational design of the basic dynamical processes of the UCLA general circulation model. In Methods in Computational Physics: Advances in Research and Applications; Chang, J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; Volume 17, pp. 173–265. [Google Scholar]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef]
- TMD. Climate of Thailand. Available online: http://www.tmd.go.th/en/archive/thailand_climate.pdf (accessed on 20 March 2022).
- Navarra, A.; Simoncini, V. Empirical Orthogonal Functions. In A Guide to Empirical Orthogonal Functions for Climate Data Analysis; Springer: Amsterdam, The Netherlands, 2010; pp. 39–67. [Google Scholar]
- Hu, W.; Newell, R.E.; Wu, Z.-X. Modes of variability of global sea surface temperature, free atmosphere temperature and oceanic surface energy flux. Clim. Dyn. 1994, 10, 377–393. [Google Scholar] [CrossRef]
- Polonskii, A.B.; Basharin, D.V. Large-scale patterns of Eurasian surface meteorological fields influenced by the climate shift of 1976–1977. Russ. Meteorol. Hydrol. 2008, 33, 280–289. [Google Scholar] [CrossRef]
- Rao, A.R.; Hsieh, C.H. Empirical orthogonal function analysis of rainfall and runoff series. Water Resour. Manag. 1991, 4, 235–250. [Google Scholar] [CrossRef]
- Cressman, G.P. An operational objective analysis system. Mon. Weather Rev. 1959, 87, 367–374. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, C.P.; McBride, J.; Liu, C.-H. Annual cycle of Southeast Asia—Maritime continent rainfall and the asymmetric monsoon transition. J. Clim. 2005, 18, 287–301. [Google Scholar] [CrossRef]
- Nounmusig, W. Analysis of rainfall in the eastern Thailand. Int. J. GEOMATE 2018, 14, 150–155. [Google Scholar] [CrossRef]
- Miller, S.T.K.; Keim, B.D.; Talbot, R.W.; Mao, H. Sea breeze: Structure, forecasting, and impacts. Rev. Geophys. 2003, 41, 1011. [Google Scholar] [CrossRef] [Green Version]
- Alomar-Garau, G.; Grimalt-Gelabert, M. Impacts of coastal breezes on the environment and human Life: The case of Mallorca (Western Mediterranean). Coasts 2022, 2, 2. [Google Scholar] [CrossRef]
- Fagundes, M.; Litvin, S.Y.; Micheli, F.; De Leo, G.; Boch, C.A.; Barry, J.P.; Omidvar, S.; Woodson, C.B. Downscaling global ocean climate models improves estimates of exposure regimes in coastal environments. Sci. Rep. 2020, 10, 14227. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Sea and lake breezes: A review of numerical studies. Bound.-Layer Meteorol. 2010, 137, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Takle, E.S. The effects of large-scale winds on the sea land-breeze circulations in an area of complex coastal heating. J. Appl. Meteorol. Climatol. 1993, 32, 1181–1195. [Google Scholar] [CrossRef]
- Feng, J.; Wei, T.; Dong, W.; Wu, Q.; Wang, Y. CMIP5/AMIP GCM simulations of East Asian summer monsoon. Adv. Atmos. Sci. 2014, 31, 836–850. [Google Scholar] [CrossRef]
- Wang, B.; Luo, X.; Liu, J. How robust is the Asian precipitation–ENSO relationship during the industrial warming period (1901–2017). J. Clim. 2020, 33, 2779–2792. [Google Scholar] [CrossRef]
- NOAA. Cold & Warm Episodes by Season. Available online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php (accessed on 20 March 2022).
- Glantz, M.H.; Ramirez, I.J. Reviewing the Oceanic Niño Index (ONI) to enhance societal readiness for El Niño’s impacts. Int. J. Disaster Risk Sci. 2020, 11, 394–403. [Google Scholar] [CrossRef]
- Cannon, F.; Carvalho, L.M.V.; Jones, C.; Norris, J.; Bookhagen, B.; Kiladis, G.N. Effects of topographic smoothing on the simulation of winter precipitation in high mountain Asia. J. Geophys. Res. Atmos. 2017, 122, 1456–1474. [Google Scholar] [CrossRef] [Green Version]
- Posada-Marín, J.A.; Rendón, A.M.; Salazar, J.F.; Mejía, J.F.; Villegas, J.C. WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: Implications for GCM-scale simulation of precipitation over complex terrain. Clim. Dyn. 2019, 52, 3609–3629. [Google Scholar] [CrossRef]
- Chansaengkrachang, K.; Luadsong, A.; Aschariyaphotha, N. A Study of the Time Lags of the Indian Ocean Dipole and Rainfall Over Thailand by Using the Cross Wavelet Analysis. Arab. J. Sci. Eng. 2015, 40, 215–225. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhou, Q.; Chen, D.; Li, J. DISO: A rethink of Taylor diagram. Int. J. Climatol. 2019, 39, 2825–2832. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, D.; Hu, Z.; Chen, X. Decompositions of Taylor diagram and DISO performance criteria. Int. J. Climatol. 2021, 41, 5726–5732. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torsri, K.; Lin, Z.; Dike, V.N.; Zhang, H.; Wu, C.; Yu, Y. Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1. Atmosphere 2022, 13, 805. https://doi.org/10.3390/atmos13050805
Torsri K, Lin Z, Dike VN, Zhang H, Wu C, Yu Y. Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1. Atmosphere. 2022; 13(5):805. https://doi.org/10.3390/atmos13050805
Chicago/Turabian StyleTorsri, Kritanai, Zhaohui Lin, Victor Nnamdi Dike, He Zhang, Chenglai Wu, and Yue Yu. 2022. "Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1" Atmosphere 13, no. 5: 805. https://doi.org/10.3390/atmos13050805
APA StyleTorsri, K., Lin, Z., Dike, V. N., Zhang, H., Wu, C., & Yu, Y. (2022). Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1. Atmosphere, 13(5), 805. https://doi.org/10.3390/atmos13050805