Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis
2.3. Source Identification Methods
3. Results and Discussion
3.1. Characteristics of PM2.5 and Chemical Composition
3.1.1. PM2.5 Concentration
3.1.2. Water-Soluble Ion Concentration
3.1.3. Concentrations of OC, EC, and Water-Soluble Organic Carbon
3.1.4. Metal Element Concentration
3.1.5. PAHs
3.1.6. PM2.5 Mass Reconstruction
3.2. PMF Source Apportionment
4. Conclusions
- High concentrations of the gaseous pollutants SO2 and NO2 appeared in winter, and O3 had the highest concentration in summer. The mass concentration of WSIs in winter accounted for 63.06% of the PM2.5 mass concentration, which was the highest in the four seasons. SO42−, NO3−, and NH4+ were the main water-soluble ions. according to the ratio of NO3−/SO42−, the Urumqi stationary pollution emission source contribution was dominant.
- The mass concentrations of OC and EC in autumn were higher than in other seasons, which may have been mainly caused by the open-air burning of biomass in surrounding farmland in autumn. The ratios of OC/EC in the three seasons of winter, spring, and summer were greater than 2, indicating the formation of SOC. The seasonal distribution of WSOC is as follows: winter (8.60 ± 3.00 µg/m3) > autumn (6.60 ± 2.64 µg/m3) > spring (4.30 ± 1.41 µg/m3) > summer (3.99 ± 1.52 µg/m3).
- The seasonal distribution of metal elements in PM2.5 in Urumqi was: autumn > winter > spring > summer. Al and Fe were the most abundant elements in the PM2.5. There were seasonal differences in the enrichment factors of Ni, Cu, Zn, Cd, Pb, and especially Cd, which was high in every season, mainly due to anthropogenic sources.
- The middle molecular weight polycyclic aromatic hydrocarbons in the PM2.5 accounted for the highest proportion of the atmosphere in Urumqi. The polycyclic aromatic hydrocarbon ratio method showed that the sources of Urumqi PAHs were motor vehicle exhaust emissions, biomass combustion, and oil and coal combustion. These sources tend to be imported sources and high-temperature combustion processes.
- According to the PMF model, the main sources of atmospheric PM2.5 in Urumqi were crustal minerals, biomass combustion, coal combustion, vehicular transport, and secondary aerosols. Among them, the contribution rate of secondary aerosols was the highest, and the contribution rate of petroleum sources was the lowest.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, H.; Zhao, C.; Yang, Y. A comprehensive analysis of the spatio-temporal variation of urban air pollution in China during 2014–2018. Atmos. Environ. 2020, 220, 117066–117077. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, Q.; Yang, M.; Li, F.; Wang, J.; Sun, Y.; Wang, C.; Wu, H.; Qian, X. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmos. Res. 2016, 181, 288–299. [Google Scholar] [CrossRef]
- Niu, X.; Ho, K.; Hu, T.; Sun, J.; Duan, J.; Huang, Y.; Lui, K.; Cao, J. Characterization of chemical components and cytotoxicity effects of indoor and outdoor fine particulate matter (PM2.5) in Xi’an, China. Environ. Sci. Pollut. Res. 2019, 26, 31913–31923. [Google Scholar] [CrossRef]
- Krall, J.R.; Adibah, N.; Babin, L.M.; Lee, Y.; Motti, G.; McCombs, M.; Mcwilliams, A.; Thornburg, J.; Pollack, A.Z. Estimating exposure to traffic-related PM2.5 for women commuters using vehicle and personal monitoring. Environ. Res. 2020, 187, 109644–109651. [Google Scholar] [CrossRef]
- Turap, Y.; Rekefu, S.; Wang, G.; Talifu, D.; Gao, B.; Aierken, T.; Shen, H.; Wang, X.M.; Tursun, Y.; Maihemuti, M.; et al. Chemical Characteristics and Source Apportionment of PM2.5 during Winter in the Southern Part of Urumqi, China. Aerosol Air Qual. Res. 2019, 19, 1325–1337. [Google Scholar] [CrossRef] [Green Version]
- Rekefu, S.; Talifu, D.; Gao, B.; Turap, Y.; Maihemuti, M.; Wang, X.M.; Abulizi, A. Polycyclic Aromatic Hydrocarbons in PM2.5 and PM2.5–10 in Urumqi, China: Temporal Variations, Health Risk, and Sources. Atmosphere 2018, 9, 412. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ding, X.; Talifu, D.; Wang, X.M.; Abulizi, A.; Maihemuti, M.; Rekefu, S. Humidity and PM2.5 composition determine atmospheric light extinction in the arid region of northwest China. J. Environ. Sci. 2021, 100, 279–286. [Google Scholar] [CrossRef]
- Ren, Y.Q.; Wang, G.H.; Wang, C.; Wang, J.Y.; Li, J.J.; Zhang, L.; Han, Y.N.; Liu, L.; Cao, C.; Cao, J.J.; et al. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi. Atmos. Environ. 2017, 148, 306–315. [Google Scholar] [CrossRef]
- Shi, G.-L.; Feng, Y.C.; Wu, J.H.; Li, X. Source Identification of Polycyclic Aromatic Hydrocarbons in Urban Particulate Matter of Tangshan, China. Aerosol Air Qual. Res. 2009, 9, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Mannino, M.R.; Orecchio, S. Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: Extraction, GC–MS analysis, distribution and sources. Atmos. Environ. 2008, 42, 1801–1817. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, L.M.; Engling, G.; Zhang, R.J.; Yang, Y.H.; Cao, J.J.; Zhu, C.S.; Wang, Q.Y.; Luo, L. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning. Atmos. Res. 2013, 122, 270–283. [Google Scholar] [CrossRef]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Luo, L.N.; Bai, X.X.; Liu, S.H.; Wu, B.B.; Liu, W.; Lv, Y.Q.; Guo, Z.H.; Lin, S.M.; Zhao, S.; Hao, Y.; et al. Fine particulate matter (PM2.5/PM1.0) in Beijing, China: Variations and chemical compositions as well as sources. Environ. Sci. 2022, 121, 187–198. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, X.; Wang, X.M.; Talifu, D.; Wang, G.; Zhang, Y.L.; Abulizi, A. Volatile Organic Compounds in a Petrochemical Region in Arid of NW China: Chemical Reactivity and Source Apportionment. Atmosphere 2019, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Chang, Y.H.; Liu, X.J.; Li, K.H.; Gong, Y.M.; He, G.X.; Wang, X.L.; Christie, P.; Zheng, M.; Dore, A.J.; et al. A multiyear assessment of air quality benefits from China’s emerging shale gas revolution: Urumqi as a case study. Environ. Sci. Technol. 2015, 49, 2066–2072. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Talifu, D.; Ding, X.; Wang, X.M.; Abulizi, A.; Tursun, Y.; An, J.Q.; Wang, W.; Zhang, X.X.; Zhang, Y.Y. Particles liquid water and acidity determine formation of secondary inorganic ions in Urumqi, NW China. Atmos. Res. 2021, 260, 105622–105631. [Google Scholar] [CrossRef]
- Wang, Y.N.; Jia, C.H.; Tao, J.; Zhang, L.M.; Liang, X.X.; Ma, J.M.; Gao, H.; Huang, T.; Zhang, K. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Sci. Total Environ. 2016, 573, 1031–1040. [Google Scholar] [CrossRef]
- Turap, Y.; Talifu, D.; Wang, X.M.; Abulizi, A.; Maihemuti, M.; Tursun, Y.; Ding, X.; Aierken, T.; Rekefu, S. Temporal distribution and source apportionment of PM2.5 chemical composition in Xinjiang, NW-China. Atmos. Res. 2019, 218, 257–268. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.H.; Wu, D.; Xu, H. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China. Particuology 2015, 18, 135–143. [Google Scholar]
- Zhang, Y.L.; Li, J.; Zhang, G.; Zotter, P.; Huang, R.J.; Wacker, L.; Szidat, S. Radiocarbon-Based Source Apportionment of Carbonaceous Aerosols at a Regional Background Site on Hainan Island, South China. Environ. Sci. Technol. 2014, 48, 2651–2659. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.M.; Cao, J.J.; Huang, R.J.; Shen, Z.X.; Chen, L.W.; Ho, K.F.; Watson, J.G. Inter-annual variability of wintertime PM2.5 chemical composition in Xi’an, China: Evidences of changing source emissions. Sci. Total Environ. 2016, 545–546, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Duan, L.; Cao, J.; Wang, S.L.; Chai, F.H.; Hu, J.; Zhang, J.Q.; Yang, Y. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J. Environ. Sci. 2016, 40, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, X.Y.; Wang, J.; Yin, B.H.; Geng, C.M.; Niu, D.W.; Yang, W.; Li, W. Chemical Composition of PM2.5 and Its Impact on Inhalation Health Risk Evaluation in a City with Light Industry in Central China. Atmosphere 2020, 11, 340. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601–602, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, L.M.; Zhou, X.M.; Duan, J.C.; Li, Y.; Hu, J.N.; He, K.B. Carbonaceous species in PM2.5 and PM10 in urban area of Zhengzhou in China: Seasonal variations and source apportionment. Atmos. Res. 2017, 191, 1–11. [Google Scholar] [CrossRef]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Du, Z.Y.; He, K.B.; Cheng, Y.; Duan, F.K.; Ma, Y.L.; Liu, J.M.; Zhang, X.L.; Zheng, M.; Rodney, W. A yearlong study of water-soluble organic carbon in Beijing I: Sources and its primary vs. secondary nature. Atmos. Environ. 2014, 92, 514–521. [Google Scholar] [CrossRef]
- Xiang, P.; Zhou, X.M.; Duan, J.C.; Tan, J.H.; He, K.B.; Yuan, C.; Ma, Y.L.; Zhang, Y.X. Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011–2012. Atmos. Res. 2017, 183, 104–112. [Google Scholar] [CrossRef]
- Viana, M.; López, J.M.; Querol, X.; Alastuey, A.; García-Gacio, D.; Blanco-Heras, G.; López-Mahía, P.; Piñeiro-Iglesias, M.; Sanz, M.J.; Sanz, F.; et al. Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmos. Environ. 2008, 42, 1941–1957. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lu, Z.Q.; Lowenthal, D.H.; Frazier, C.A.; Solomon, P.A.; Thullier, R.H.; Magliano, K. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmos. Environ. 1996, 30, 2079–2112. [Google Scholar] [CrossRef]
- Huang, X.; Olmez, I.; Aras, N.K.; Gordon, G.E. Emissions of trace elements from motor vehicles: Potential marker elements and source composition profile. Atmos. Environ. 1994, 28, 1385–1391. [Google Scholar] [CrossRef]
- Zhai, Y.; Liu, X.T.; Chen, H.M.; Xu, B.B.; Zhu, L.; Li, C.T.; Zeng, G.M. Source identification and potential ecological risk assessment of heavy metals in PM2.5 from Changsha. Sci. Total Environ. 2014, 493, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Cheng, K.; Wang, Y.; Zhao, D.; Lu, L.; Jia, W.X.; Hao, J.M. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmos. Environ. 2012, 50, 157–163. [Google Scholar] [CrossRef]
- Khare, P.; Baruah, B.P. Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmos. Res. 2010, 98, 148–162. [Google Scholar] [CrossRef]
- Mcmurtry, G.M.; Wiltshire, J.C.; Kauahikaua, J.P. Heavy Metal Anomalies in Coastal Sediments of O’ahu, Hawai’i. Oceanogr. Lit. Rev. 1995, 49, 452–470. [Google Scholar]
- Yu, Q.Q.; Gao, B.; Li, G.H.; Zhang, Y.L.; He, Q.F.; Deng, W.; Huang, Z.H.; Ding, X.; Hu, Q.H.; Huang, Z.Z.; et al. Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China. Atmos. Environ. 2016, 142, 313–323. [Google Scholar] [CrossRef]
- Lammel, G.; Sehili, A.M.; Bond, T.; Feichter, J.; Grassl, H. Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons—A modelling approach. Chemosphere 2009, 76, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, Y.; Yi, X.; Wang, Z.X.; Yi, Y.Y.; Huang, T.; Gao, H.; Ma, J.M. Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, northwest China. Environ. Sci. Pollut. Res. 2017, 24, 12820–12834. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Chen, J.; Yang, H.N.; Li, R.J.; Yu, Q. Seasonal variation and potential source regions of PM2.5-bound PAHs in the megacity Beijing, China: Impact of regional transport. Environ. Pollut. 2017, 231, 329–338. [Google Scholar] [CrossRef]
- Wang, W.; Ding, X.; Tursun, Y.; Tursun, Y.; Abulizi, A.; Wang, X.M.; Shao, L.Y.; Talifu, D.; An, J.Q.; Zhang, X.X.; et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Sci. Total Environ. 2020, 739, 139518–139530. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Man, R.L.; Ma, S.X.; Li, J.S.; Wu, Q.; Peng, J.Y. Atmospheric levels and health risk of polycyclic aromatic hydrocarbons (PAHs) bound to PM2.5 in Guangzhou, China. Mar. Pollut. Bull. 2015, 100, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Bootdee, S.; Chantara, S.; Prapamontol, T. Determination of PM2.5 and polycyclic aromatic hydrocarbons from incense burning emission at shrine for health risk assessment. Atmos. Pollut. Res. 2016, 7, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Reff, A.; Eberly, S.; Bhave, P. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Air Waste Manag Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment. Atmos. Res. 2016, 174, 106–119. [Google Scholar] [CrossRef]
- Song, F.; Gao, Y. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmos. Environ. 2011, 45, 6714–6723. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chiang, H.C.; Lin, S.L.; Chen, M.J.; Lin, T.Y.; Chen, Y.C. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Sci. Total Environ. 2016, 541, 1139–1150. [Google Scholar] [CrossRef]
Species | Autumn | Winter | Spring | Summer | Annual |
---|---|---|---|---|---|
Na+ | 1.57 ± 0.9 | 0.98 ± 1.1 | 1.94 ± 1.7 | 2.59 ± 1.5 | 1.93 ± 1.5 |
NH4+ | 18.45 ± 6.9 | 28.11 ± 12.7 | 6.90 ± 7.0 | 21.21 ± 0.7 | 10.88 ± 12.2 |
K+ | 0.42 ± 0.3 | 0.24 ± 0.1 | 0.22 ± 0.1 | 0.18 ± 0.1 | 0.25 ± 0.2 |
Mg2+ | 0.26 ± 0.2 | 0.13 ± 0.1 | 0.27 ± 0.2 | 0.21 ± 0.1 | 0.22 ± 0.1 |
Ca2+ | 3.59 ± 4.0 | 0.21 ± 0.5 | 3.04 ± 3.5 | 0.84 ± 1.6 | 1.93 ± 3.0 |
F− | 1.21 ± 0.8 | 0.64 ± 0.3 | 0.44 ± 0.4 | 0.11 ± 0.1 | 0.52 ± 0.5 |
Cl− | 0.49 ± 0.3 | 0.68 ± 0.3 | 0.41 ± 0.4 | 0.11 ± 0.1 | 0.37 ± 0.3 |
NO3− | 24.45 ± 20.6 | 30.75 ± 19.1 | 9.65 ± 12.1 | 2.73 ± 1.4 | 13.46 ± 17.5 |
PO43− | 0.27 ± 0.2 | 0.50 ± 0.3 | 0.34 ± 0.1 | 0.50 ± 0.3 | 0.33 ± 0.2 |
SO42− | 17.34 ± 11.9 | 34.35 ± 25.4 | 11.83 ± 9.2 | 3.78 ± 1.3 | 13.58 ± 16.4 |
SNA | 60.24 ± 30.0 | 99.22 ± 53.6 | 25.16 ± 24.5 | 6.61 ± 2.9 | 37.9 ± 46.1 |
WSIs | 68.08 ± 32.3 | 99.62 ± 53.1 | 31.68 ± 25.7 | 11.04 ± 4.8 | 43.47 ± 52.2 |
Species | Autumn | Winter | Spring | Summer | Annual |
---|---|---|---|---|---|
OC | 13.39 ± 6.7 | 11.21 ± 3.7 | 10.99 ± 2.5 | 12.44 ± 4.2 | 12.00 ± 4.4 |
EC | 8.36 ± 5.9 | 4.73 ± 1.9 | 3.45 ± 1.1 | 4.46 ± 2.4 | 5.00 ± 3.5 |
TCA | 29.81 ± 15.6 | 22.67 ± 7.5 | 21.04 ± 4.6 | 24.38 ± 8.9 | 24.20 ± 9.8 |
OC/EC | 1.84 ± 0.5 | 2.55 ± 0.7 | 3.43 ± 1.3 | 3.22 ± 1.1 | 2.89 ± 1.2 |
SOC | - | 7.52 ± 2.8 | 8.30 ± 2.3 | 8.96 ± 2.9 | 8.10 ± 3.2 |
WSOC | 6.60 ± 2.6 | 8.60 ± 3.0 | 4.30 ± 1.4 | 3.99 ± 1.5 | 5.38 ± 2.6 |
WIOC | 6.80 ± 7.1 | 2.62 ± 1.9 | 6.69 ± 2.4 | 8.46 ± 3.2 | 6.62 ± 4.4 |
Species | Autumn | Winter | Spring | Summer | |
---|---|---|---|---|---|
Concentration (μg /m3) | Al | 15.11 ± 10.1 | 7.84 ± 3.9 | 8.25 ± 6.0 | 6.90 ± 2.2 |
Fe | 8.33 ± 6.9 | 2.07 ± 0.9 | 5.00 ± 4.5 | 3.87 ± 1.5 | |
EF | Al | 2979.58 ± 1538.4 | 1558.3 ± 623.1 | 2126.24 ± 889.9 | 5666.13 ± 1531.0 |
Fe | 306.83 ± 228.9 | 70.11 ± 24.2 | 215.76 ± 122.1 | 523.02 ± 153.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Talifu, D.; Gao, B.; Zhang, X.; Wang, W.; Abulizi, A.; Wang, X.; Ding, X.; Liu, H.; Zhang, Y. Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China. Atmosphere 2022, 13, 781. https://doi.org/10.3390/atmos13050781
Li K, Talifu D, Gao B, Zhang X, Wang W, Abulizi A, Wang X, Ding X, Liu H, Zhang Y. Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China. Atmosphere. 2022; 13(5):781. https://doi.org/10.3390/atmos13050781
Chicago/Turabian StyleLi, Kejun, Dilinuer Talifu, Bo Gao, Xiaoxiao Zhang, Wei Wang, Abulikemu Abulizi, Xinming Wang, Xiang Ding, Huibin Liu, and Yuanyu Zhang. 2022. "Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China" Atmosphere 13, no. 5: 781. https://doi.org/10.3390/atmos13050781
APA StyleLi, K., Talifu, D., Gao, B., Zhang, X., Wang, W., Abulizi, A., Wang, X., Ding, X., Liu, H., & Zhang, Y. (2022). Temporal Distribution and Source Apportionment of Composition of Ambient PM2.5 in Urumqi, North-West China. Atmosphere, 13(5), 781. https://doi.org/10.3390/atmos13050781