Sensitivity to Different Reanalysis Data on WRF Dynamic Downscaling for South China Sea Wind Resource Estimations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Model Description
2.3. Methodology
3. Results
3.1. Comparison of Surface Winds
3.2. Comparison of Wind Direction
3.3. Comparison of Surface Temperature
3.4. Comparison of Seasonal Winds
3.5. Interannual Variations and Wind Power Density
4. Discussions
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Global Energy Statistical Yearbook. 2019. Available online: https://yearbook.enerdata.net/total-energy/world-energy-intensity-gdp-data.html (accessed on 30 September 2021).
- “2020 Q2 Electricity & Other Energy Statistics”. China Energy Portal. Available online: https://chinaenergyportal.org/2020-q2-electricity-other-energy-statistics (accessed on 25 April 2021).
- Yang, J.; Gao, S. Analysis: China Adds to UHV Network to Transfer Surplus Wind Energy. Available online: https://www.windpowermonthly.com/article/1361466/analysis-china-adds-uhv-network-transfer-surplus-wind-energy (accessed on 28 August 2020).
- Zhang, S.; Wei, J.; Chen, X.; Zhao, Y. China in global wind power development: Role, status and impact. Renew. Sustain. Energy Rev. 2020, 127, 109881. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Q.; Li, X.; Cui, X. Overview of wind power in China: Status and future. Sustainability 2017, 9, 1454. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Fan, C.; Dai, Y.; Li, L.; Sun, W.; Zhou, P.; Qu, X. Assessment of the joint development potential of wave and wind energy in the South China Sea. Energies 2018, 11, 398. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Zhuang, H.; Li, X.; Li, X. Wind energy and wave energy resources assessment in the East China Sea and South China Sea. Sci. China Technol. Sci. 2012, 55, 163–173. [Google Scholar] [CrossRef]
- Zheng, C.W.; Pan, J.; Li, J.X. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean. Eng. 2013, 65, 39–48. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Badger, M.; Hasager, C.B.; Xing, X.; Jiang, Y. Offshore wind resources assessment from multiple satellite data and WRF modeling over South China Sea. Remote Sens. 2015, 7, 467–487. [Google Scholar] [CrossRef] [Green Version]
- Hashim, F.E.; Peyre, O.; Lapok, S.J.; Yaakob, O.; Din, A.H.M. Offshore wind energy resource assessment in Malaysia with satellite altimetry. J. Sustain. Sci. Manag. 2020, 15, 111–124. [Google Scholar] [CrossRef]
- Alifdini, I.; Shimada, T.; Wirasatriya, A. Seasonal distribution and variability of surface winds in the Indonesian seas using scatterometer and reanalysis data. Int. J. Climatol. 2021, 41, 4825–4843. [Google Scholar] [CrossRef]
- Nezhad, M.M.; Neshat, M.; Heydari, A.; Razmjoo, A.; Piras, G.; Garcia, D.A. A new methodology for offshore wind speed assessment integrating Sentinel-1, ERA-Interim and in-situ measurement. Renew. Energy 2021, 172, 1301–1313. [Google Scholar] [CrossRef]
- Chen, X.; Pan, D.; He, X.; Bai, Y.; Wang, Y.; Zhu, Q. Seasonal and interannual variability of sea surface wind over the China seas and its adjacent ocean from QuikSCAT and ASCAT data during 2000–2011. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Proceedings of the SPIE Remote Sensing, 2012, Edinburgh, UK, 24–27 September 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8532, p. 853214. [Google Scholar] [CrossRef]
- Jiang, D.; Zhuang, D.; Huang, Y.; Wang, J.; Fu, J. Evaluating the spatio-temporal variation of China’s offshore wind resources based on remotely sensed wind field data. Renew. Sustain. Energy Rev. 2013, 24, 142–148. [Google Scholar] [CrossRef]
- Sun, S.; Fang, Y.; Zu, Y.; Liu, B.; Samah, A.A. Seasonal characteristics of mesoscale coupling between the sea surface temperature and wind speed in the South China Sea. J. Clim. 2020, 33, 625–638. [Google Scholar] [CrossRef]
- Larsén, X.G.; Mann, J. Extreme winds from the NCEP/NCAR Reanalysis Data. Wind. Energy 2009, 12, 556–573. [Google Scholar] [CrossRef]
- Gallego, C.; Pinson, P.; Madsen, H.; Costa, A.; Cuerva, A. Influence of local wind speed and direction on wind power dynamics—Application to offshore very short-term forecasting. Appl. Energy 2011, 88, 4087–4096. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, B.; Durante, F.; Lange, B.; Kreutzer, T.; Tambke, J. Offshore wind resource assessment with WAsP and MM5: Comparative study for the German Bight. Wind Energy 2007, 10, 121–134. [Google Scholar] [CrossRef]
- Wallcraft, A.J.; Kara, A.B.; Barron, C.N.; Metzger, E.J.; Pauley, R.L.; Bourassa, M.A. Comparisons of monthly mean 10 m wind speeds from satellites and NWP products over the global ocean. J. Geophys. Res. 2009, 114, 16109–16114. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.B.; Astrup, P.; Zhu, R.; Chang, R.; Badger, M.; Hahmann, A.N. Quarter-century offshore winds from SSM/I and WRF in the North Sea and South China Sea. Remote Sens. 2016, 8, 769. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Duan, C.; Dong, S. Long-term wind and wave energy resource assessment in the South China sea based on 30-year hindcast data. Ocean. Eng. 2018, 163, 58–75. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Liu, Y.; Li, H.; Knievel, J.C. Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos. 2019, 124, 1370–1391. [Google Scholar] [CrossRef]
- Pan, L.; Liu, Y.; Roux, G.; Cheng, W.; Liu, Y.; Hu, J.; Jin, S.; Feng, S.; Du, J.; Peng, L. Seasonal variation of the surface wind forecast performance of the high-resolution WRF-RTFDDA system over China. Atmos. Res. 2021, 259, 105673. [Google Scholar] [CrossRef]
- Zhang, C.; He, J.; Lai, X.; Liu, Y.; Che, H.; Gong, S. The impact of the variation in weather and weason on WRF dynamical downscaling in the Pearl River Delta region. Atmosphere 2021, 12, 409. [Google Scholar] [CrossRef]
- National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce. 2000, Updated Daily. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: https://rda.ucar.edu/datasets/ds083.2/ (accessed on 25 May 2021). [CrossRef]
- European Centre for Medium-Range Weather Forecasts. 2009, Updated Monthly. ERA-Interim Project. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. Available online: https://rda.ucar.edu/datasets/ds627.0/ (accessed on 25 May 2021). [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S. NCEP Climate Forecast System Version 2 (CFSv2) 6-Hourly Products. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. 2011. Available online: https://rda.ucar.edu/datasets/ds094.0/ (accessed on 25 May 2021). [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. Offshore wind energy resource simulation forced by different reanalyses: Comparison with observed data in the Iberian Peninsula. Appl. Energy 2014, 134, 57–64. [Google Scholar] [CrossRef]
- Giannakopoulou, E.M.; Nhili, R. WRF model methodology for offshore wind energy applications. Adv. Meteorol. 2014, 2014, 319819. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, T.; Barstad, I. A dynamical downscaling of ERA-Interim in the North Sea using WRF with a 3 km grid—For wind resource applications. Wind Energy 2016, 19, 1945–1959. [Google Scholar] [CrossRef]
- Mattar, C.; Borvarán, D. Offshore wind power simulation by using WRF in the central coast of Chile. Renew. Energy 2016, 94, 22–31. [Google Scholar] [CrossRef]
- Kryza, M.; Wałaszek, K.; Ojrzyńska, H.; Szymanowski, M.; Werner, M.; Dore, A.J. High-resolution dynamical downscaling of ERA-interim using the WRF regional climate model for the area of Poland. Part 1: Model configuration and statistical evaluation for the 1981–2010 Period. Pure Appl. Geophys. 2017, 174, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, Y.; Pan, Y.; Xu, Y. Evaluation of near-surface wind speed simulations over the Tibetan Plateau from three dynamical downscalings based on WRF model. Theor. Appl. Climatol. 2018, 134, 1399–1411. [Google Scholar] [CrossRef]
- Chadee, X.T.; Seegobin, N.R.; Clarke, R.M. Optimizing the Weather Research and Forecasting (WRF) model for mapping the near-surface wind resources over the Southernmost Caribbean Islands of Trinidad and Tobago. Energies 2017, 10, 931. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, J.M.S. WRF wind speed simulation and SAM wind energy estimation: A case study in Dili Timor Leste. IEEE Access 2019, 7, 35382–35393. [Google Scholar] [CrossRef]
- Lakshmi, D.D.; Murty, P.L.N.; Bhaskaran, P.K.; Sahoo, B.; Kumar, T.S.; Shenoi, S.S.C.; Srikanth, A.S. Performance of WRF-ARW winds on computed storm surge using hydodynamic model for Phailin and Hudhud cyclones. Ocean. Eng. 2017, 131, 135–148. [Google Scholar] [CrossRef]
- Anandh, T.S.; Das, B.K.; Kuttippurath, J.; Chakraborty, A. A coupled model analyses on the interaction between oceanic eddies and tropical cyclones over the Bay of Bengal. Ocean. Dyn. 2020, 70, 327–337. [Google Scholar] [CrossRef]
- Chen, C.; Sasa, K.; Ohsawa, T.; Kashiwagi, M.; Prpić-Oršić, J.; Mizojiri, T. Comparative assessment of NCEP and ECMWF global datasets and numerical approaches on rough sea ship navigation based on numerical simulation and shipboard measurements. Appl. Ocean. Res. 2020, 101, 102219. [Google Scholar] [CrossRef]
- Devanand, A.; Roxy, M.K.; Ghosh, S. Coupled land-atmosphere regional model reduces dry bias in Indian Summer Monsoon rainfall simulated by CFSv2. Geophys. Res. Lett. 2018, 45, 2476–2486. [Google Scholar] [CrossRef]
- Diaz, L.R.; Mollmann, R.A.; Muchow, G.B.; Käfer, P.S.; Rocha, N.S.; Kaiser, E.A.; Costa, S.T.L.; Hallal, G.P.; Alves, R.C.M.; Rolim, S.B.A. Analysis of an extratropical cyclone in the Southwest Atlantic: WRF model boundary conditions sensitivity. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Santiago, Chile, 22–26 March 2020; XLII-3/W12-2020. pp. 107–112. [Google Scholar] [CrossRef]
- Gippius, F.N.; Myslenkov, S.A. Black Sea wind wave climate with a focus on coastal regions. Ocean. Eng. 2020, 218, 108199. [Google Scholar] [CrossRef]
- Im, E.S.; Ha, S.; Qiu, L.; Hur, J.; Jo, S.; Shim, K.M. An evaluation of temperature-based agricultural indices over Korea from the high-resolution WRF simulation. Front. Earth Sci. 2021, 9, 357. [Google Scholar] [CrossRef]
- Samanta, D.; Hameed, S.N.; Jin, D.; Thilakan, V.; Ganai, M.; Rao, S.A.; Deshpande, M. Impact of a narrow coastal Bay of Bengal Sea surface temperature front on an Indian summer monsoon simulation. Sci. Rep. 2018, 8, 17694. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Bentamy, A.; Fillon, D.C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 2012, 33, 1729–1754. [Google Scholar] [CrossRef] [Green Version]
- Gruber, K.; Regner, P.; Wehrle, S.; Zeyringer, M.; Schmidt, J. Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas. Energy 2022, 238, 121520. [Google Scholar] [CrossRef]
- Olauson, J.; Bergkvist, M. Modelling the Swedish wind power production using MERRA reanalysis data. Renew. Energy 2015, 76, 717–725. [Google Scholar] [CrossRef]
- Global Surface Hourly [Integrated Surface Dataset]. NOAA National Centers for Environmental Information, 2011. Available online: https://journals.ametsoc.org/view/journals/bams/92/6/2011bams3015_1.xml (accessed on 20 October 2020). [CrossRef]
- National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce. ETOPO2, Global 2 Arc-minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC). Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, 2001. Available online: https://rda.ucar.edu/datasets/ds759.3/ (accessed on 25 October 2020). [CrossRef]
- Copernicus Climate Change Service (C3S): ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017. Available online: https://cds.climate.copernicus.eu/cdsapp (accessed on 15 January 2021).
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Risien, C.M.; Chelton, D.B. A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr. 2008, 38, 2379–2413. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; p. 145. [Google Scholar]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Weather. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Brower, M.C. Wind Resource assessment: A Practical Guide to Developing a Wind Project; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; p. 280. ISBN 9781118249864. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application, 2nd ed.; John Wiley & Sons, Inc.: Washington, DC, USA, 2010; p. 689. ISBN 978-0470015001. [Google Scholar]
- Betz, A. Introduction to the Theory of Flow Machines; Permagon Press: Oxford, UK, 1966; ISBN 9781483180908. [Google Scholar]
- Zheng, C.W.; Li, X.Y.; Luo, X.; Chen, X.; Qian, Y.H.; Zhang, Z.H.; Gao, Z.S.; Du, Z.B.; Gao, Y.B.; Chen, Y.G. Projection of future global offshore wind energy resources using CMIP data. Atmos.-Ocean 2019, 57, 134–148. [Google Scholar] [CrossRef]
- Soares, P.M.; Lima, D.C.; Nogueira, M. Global offshore wind energy resources using the new ERA-5 reanalysis. Environ. Res. Lett. 2020, 15, 1040a2. [Google Scholar] [CrossRef]
- Xian, T.; Homeyer, C.R. Global tropopause altitudes in radiosondes and reanalyses. Atmos. Chem. Phys. 2019, 19, 5661–5678. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Wright, J.S.; Manney, G.L.; Gray, L.J.; Anstey, J.; Birner, T.; Davis, S.; Gerber, E.P.; Harvey, V.L.; Hegglin, M.I.; et al. Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys. 2017, 17, 1417–1452. [Google Scholar] [CrossRef] [Green Version]
No | Coordinates | Locations | Category |
---|---|---|---|
1 | 24.667° N → 113.60° E | SHAOGUAN | Onshore |
2 | 26.633° N → 118.15° E | NANPING | Onshore |
3 | 25.850° N → 114.95° E | GANZHOU | Onshore |
4 | 24.775° N → 118.84° E | 100 km away from QUANZHOU | Offshore |
5 | 22.627° N → 115.31° E | 100 km away from SHANWEI | Offshore |
6 | 21.137° N → 110.71° E | 100 km away from NANSAN | Offshore |
7 | 20.667° N → 116.72° E | DONGSHA | Offshore island |
8 | 21.217° N → 110.40° E | ZHANJIANG | Coastal |
9 | 22.309° N → 113.91° E | HONGKONG | Coastal |
No | Locations | RMSE | Std Deviation | Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WRF-E | WRF-N | WRF-C | WRF-E | WRF-N | WRF-C | WRF-E | WRF-N | WRF-C | ||
1 | SHAOGUAN | 0.413 | 0.507 | 0.298 | 0.503 | 0.809 | 0.666 | 0.755 | 0.613 | 0.627 |
2 | NANPING | 0.291 | 0.280 | 0.393 | 0.278 | 0.288 | 0.404 | 0.778 | 0.676 | 0.693 |
3 | GANZHOU | 0.434 | 0.372 | 0.383 | 0.437 | 0.452 | 0.290 | 0.895 | 0.819 | 0.890 |
4 | Offshore QUANZHOU | 0.692 | 1.043 | 0.898 | 1.990 | 1.910 | 2.220 | 0.962 | 0.899 | 0.924 |
5 | Offshore SHANWEI | 1.178 | 1.630 | 1.222 | 0.598 | 1.053 | 0.982 | 0.886 | 0.792 | 0.816 |
6 | Offshore NANSAN | 1.121 | 1.446 | 1.183 | 0.898 | 1.324 | 1.338 | 0.902 | 0.812 | 0.837 |
7 | DONGSHA | 2.298 | 2.285 | 2.379 | 1.037 | 1.071 | 0.938 | 0.918 | 0.912 | 0.933 |
8 | ZHANJIANG | 0.552 | 0.728 | 0.817 | 0.765 | 0.642 | 0.683 | 0.707 | 0.712 | 0.687 |
9 | HONGKONG | 0.520 | 0.879 | 0.957 | 0.832 | 1.064 | 0.957 | 0.819 | 0.707 | 0.536 |
No | Locations | RMSE | Std Deviation | Correlation Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WRF-E | WRF-N | WRF-C | WRF-E | WRF-N | WRF-C | WRF-E | WRF-N | WRF-C | ||
1 | SHAOGUAN | 0.574 | 2.331 | 2.586 | 6.635 | 6.377 | 5.554 | 0.997 | 0.952 | 0.915 |
2 | NANPING | 1.407 | 2.404 | 2.609 | 5.954 | 5.814 | 4.271 | 0.978 | 0.929 | 0.737 |
3 | GANZHOU | 2.101 | 2.803 | 3.662 | 5.351 | 6.046 | 7.500 | 0.958 | 0.871 | 0.875 |
4 | Offshore QUANZHOU | 0.660 | 2.150 | 3.510 | 5.850 | 6.010 | 3.740 | 0.994 | 0.936 | 0.609 |
5 | Offshore SHANWEI | 0.416 | 2.448 | 2.594 | 4.894 | 6.165 | 4.146 | 0.997 | 0.923 | 0.828 |
6 | Offshore NANSAN | 0.429 | 2.951 | 2.781 | 5.002 | 6.073 | 3.669 | 0.998 | 0.880 | 0.872 |
7 | DONGSHA | 1.137 | 1.148 | 1.913 | 2.909 | 2.877 | 1.277 | 0.932 | 0.930 | 0.917 |
8 | ZHANJIANG | 0.909 | 1.154 | 2.267 | 2.316 | 2.930 | 2.599 | 0.991 | 0.972 | 0.883 |
9 | HONGKONG | 2.050 | 3.320 | 3.250 | 2.270 | 3.320 | 3.330 | 0.902 | 0.739 | 0.587 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thankaswamy, A.; Xian, T.; Ma, Y.-F.; Wang, L.-P. Sensitivity to Different Reanalysis Data on WRF Dynamic Downscaling for South China Sea Wind Resource Estimations. Atmosphere 2022, 13, 771. https://doi.org/10.3390/atmos13050771
Thankaswamy A, Xian T, Ma Y-F, Wang L-P. Sensitivity to Different Reanalysis Data on WRF Dynamic Downscaling for South China Sea Wind Resource Estimations. Atmosphere. 2022; 13(5):771. https://doi.org/10.3390/atmos13050771
Chicago/Turabian StyleThankaswamy, Anandh, Tao Xian, Yong-Feng Ma, and Lian-Ping Wang. 2022. "Sensitivity to Different Reanalysis Data on WRF Dynamic Downscaling for South China Sea Wind Resource Estimations" Atmosphere 13, no. 5: 771. https://doi.org/10.3390/atmos13050771
APA StyleThankaswamy, A., Xian, T., Ma, Y. -F., & Wang, L. -P. (2022). Sensitivity to Different Reanalysis Data on WRF Dynamic Downscaling for South China Sea Wind Resource Estimations. Atmosphere, 13(5), 771. https://doi.org/10.3390/atmos13050771