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Abstract: As the world is moving toward greener forms of energy, to mitigate the effects of global
warming due to greenhouse gas emissions, wind energy has risen as the most invested-in renewable
energy. China, as the largest consumer of world energy, has started investing heavily in wind energy
resources. Most of the wind farms in China are located in Northern China, and they possess the
disadvantage of being far away from the energy load. To mitigate this, recently, offshore wind
farms are being proposed and invested in. As an initial step in the wind farm setting, a thorough
knowledge of the wind energy potential of the candidate region is required. Here, we conduct
numerical experiments with Weather Research and Forecasting (WRF) model forced by analysis
(NCEP-FNL) and reanalysis (ERA-Interim and NCEP-CFSv2) to find the best choice in terms of
initial and boundary data for downscale in the South China Sea. The simulations are validated by
observation and several analyses. Specific locations along China’s coast are analyzed and validated
for their wind speed, surface temperature, and energy production. The analysis shows that the model
forced with ERA-Interim data provides the best simulation of surface wind speed characteristics in
the South China Sea, yet the other models are not too far behind. Moreover, the analysis indicates
that the Taiwan Strait along the coastal regions of China is an excellent region to set up wind farms
due to possessing the highest wind speeds along the coast.

Keywords: South China Sea; wind energy; WRF modeling; sensitivity test

1. Introduction

The development of any nation in our world is dependent on the energy it consumes.
As the world is industrializing more, the world’s energy requirement has been increasing
significantly in recent decades. To meet the energy demands, global nations have been
using thermal power stations based on fossil fuels, nuclear power, and hydroelectric
power. The world energy production in the year 2019 was about 31% from oil, 26% from
coal, 23% from natural gas, 10% from electric power, 10% from biomass, and the rest
from other sources [1]. Of this world production, 24.5% of global energy is consumed by
China, 16.1% by the USA, with India coming third at 6% [1]. The countries, which were
mainly dependent on fossil fuels for their energy sources, have been asked to reduce their
emissions and their contributions to the global climate crisis in the last decade. In 2019,
China’s dependence on nonrenewable energy sources is about 73% and it is trying to shift
most of its energy production to renewable energy from wind and solar radiation. On the
renewable energy front, the majority of the energy comes from hydroelectric followed by
wind energy. Preliminary analysis of the first half of 2020 has shown that China’s energy
production from renewable has increased up to 40% [2]. Even though hydroelectric is
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renewable, its environmental impact and feasibility have made wind energy the most
investable source of future renewable energy investment. China has more than doubled its
construction of wind and solar power plants in the year 2020 [2].

China’s wind energy farming is mainly focused on wind resources in the mountainous
Northern China where the power load is minimum. Meanwhile, most of China’s power
grids are located in Southeastern China along the coastal region [3,4]. Hence, most of the
onshore wind energy potential of China is underutilized, as they are expensive to connect
to the grid. Recently, there has been an incentive to increase the power production along
the offshore region where the population and demand coexist. Offshore wind energy farms
can be set up in the coastal region where the average depth of the ocean is less than 50 m.
Eastern and Southeastern China have a coastal region that satisfies these criteria [5].

Wind energy production along the South China Sea has a significant seasonal vari-
ability, with most of the wind energy in the fall and winter seasons [6–8]. To maximize
energy production, it is necessary to have a thorough understanding of the energy available
for higher spatial–temporal resolution along the coastal regions of southern China. Data
sources from satellites, in situ observations, and numerical weather forecast models pave
our initial mode of analysis. Previous studies found that the South China Sea has been iden-
tified as having an excellent wind energy source. Figure 1 shows the terrain and bathymetry
of the South China Sea and the surrounding region. Along the southern coast of China
(Figure 1b), the continental shelf extends up to 100 km away from the coastal region with
vast shallow coasts. With the lack of in situ data for offshore conditions, satellite data are
used for wind energy analysis along the South China Sea [9–12]. With the onset of satellite
data, Taiwan Strait along the South China Sea has been found to have the highest wind
speed in the winter season (above 600 Wm−2) [13,14]. Satellite records steady wind speed
during the fall and winter seasons (above 6 m s−1) in the central and northern parts of the
South China Sea [15]. The satellite data is limited by temporal resolution, cloud cover, and
constricted only to the surface. Data from global models, which have been accumulating
for the past 25 years, can be used but they are not consistent or high resolution to analyze
the recent variations [16]. Numerical weather prediction models are an excellent tool for
analyzing the regional wind resources in a hindcast and forecast manner for understanding
the resources at any location. Global wind atlases from numerical models are available
which provides monthly climatology of wind speed across the globe at high resolutions, but
they are not tailored for a particular region. In numerical weather prediction, the selection
of initial and boundary conditions plays an important role in the model outcomes. These
initial and boundary conditions are obtained mostly from global models which are run at a
low resolution. Since there are many global models to obtain these data, we here analyze
the performance of downscaling three widely used global reanalysis to simulate the wind
conditions over the South China Sea and the surrounding region.

The numerical model, especially the Weather Research and Forecasting (WRF-ARW)
model, was developed to provide high resolution temporal and spatial atmospheric data
and is being used by many researchers for wind energy estimations [17–19]. Hasager et al. [20]
analyzed the South China Sea wind energy using WRF, forced with ERA-Interim reanalysis.
Wang et al. [21] analyzed the South China Sea wind spatial distribution using WRF forced
by NCEP/NCAR reanalysis. They emphasized that the maximum wind occurs along
coastal Southern China. Several more numerical modeling analyses have been conducted
over China and surrounding regions as well [22–24].

In the field of regional-scale atmospheric modeling, researchers use mainly three
different reanalysis data, namely (i) National Centers for Environmental Predictions Final
Analysis (NCEP-FNL) [25], (ii) European Centre for Medium-Range Weather Forecasts
Reanalysis project (ERA-Interim) [26], and (iii) the National Centers for Environmental
Prediction Climate Forecast System version 2 (NCEP-CFSv2) [27]. The selection of the
reanalysis data for wind speed estimations depends on the performance of each of these
over any particular region. For example, ERA-Interim data are found to be the best for
downscaling among five other reanalysis data (NCEP-R2, NCEP-CFSR, NASA-MERRA,
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NCEP-FNL, and NCEP-GFS) over the Iberian Peninsula [28]. ERA-Interim is also used in
the downscaling along the North Sea [29,30], along the Chilean coast [31], along Poland [32],
and over Tibetan Plateau [33]. NCEP-FNL data is also widely used by researchers in their
regional modeling. For example, NCEP-FNL data is used for atmosphere modelling along
Caribbean Islands [34], Timor Leste islands [35], and the Indian coastal region [36,37].
NCEP-FNL data is found to outperform ERA-Interim data in a long-term downscaling
study across the world [38]. NCEP-CFSv2 data is also used in modeling works across the
world. Notably, NCEP-CFSv2 is used in monsoon studies across India [39,40], extratropical
cyclones over the Atlantic region [41], wind energy estimations along the Black Sea [42],
and extreme events over Korea [43]. The objective of this work is to study the impact of
different reanalysis data on the long term WRF dynamic downscaling of the South China
Sea and the surrounding region, and the seasonal variability of wind resources along the
South China Sea, and to identify the locations of maximum wind speed along the South
China Sea coast.
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Figure 1. (a) Terrain and Bathymetry (m) of South China Sea and surrounding region from ETOPO2 
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Figure 1. (a) Terrain and Bathymetry (m) of South China Sea and surrounding region from ETOPO2
data. (b) Southern China coast showing the shallow bathymetry. The point locations used in the
following analysis are shown as blue stars.

2. Materials and Methods
2.1. Data

To analyze the impact of different initial and forcing boundary conditions, we used
three datasets: (i) NCEP-FNL data, (ii) ERA-Interim, data and (iii) NCEP-CFSv2 data. The
NCEP-FNL data are analysis data while the other two are reanalysis data. The NCEP-FNL
data has a spatial resolution of 1◦, ERA-Interim has 0.75◦, and NCEP-CFS2 has 0.5◦. All the
models have high number of vertical levels with 52 levels in NCEP-FNL, 60 in ERA-Interim,
and 64 in NCEP-CFS2. The simulations are conducted over the years 2015–2018.

For the model validations, the following datasets are used as well. Satellite-derived
data include surface temperature and oceanic surface winds from the Modern-Era Retro-
spective analysis for Research and Applications (MERRA-2) which is created from Goddard
Earth Observing System Data Assimilation System Version 5 (GEOS–5) [44] and Advanced
Scatterometer (ASCAT) [45]. The MERRA data is extracted for the period 2015–2018 with
~0.5◦ resolution. The MERRA data have been validated by many researchers [46,47] and
hence are used as observational data for the locations where in situ data are not available
in our comparisons. For analysis over a location (in Section 3.1), the data are extracted
through the nearest neighbor method. The in situ global hourly integrated surface data
from National Centers for Environmental Information (NCEI), National Oceanic Atmo-
spheric Administration (NOAA) [48] are also used for model validations. These data are
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available near international airports with a high temporal resolution. The topography
for the study region is obtained from ETOPO2 data [49]. For seasonal comparison, the
near-surface winds over monthly scales are estimated from ECMWF-ERA5 [50] with ~2.5◦

resolution, NCEP 2 reanalysis data [51] with ~2◦ resolution, and QuikScat data [52] with
~0.25◦ resolution.

2.2. Model Description

The advanced WRF model (version 4.0) [53] used for this study consists of a dynamics
solver together with physics schemes, initialization routines, and a data assimilation
system (the assimilation system is not used here). WRF is a fully compressible, Euler non-
hydrostatic model, using terrain-following hydrostatic pressure vertical coordinate, with
the vertical grid stretching such that the vertical levels are closer together near the surface
and more spread out aloft. The horizontal grid is an Arakawa C grid. For integrating the
equations, a third-order Runge Kutta scheme with a smaller time step is used for acoustic
and gravity wave modes.

In terms of model physics, the WRF model utilizes the rapid and accurate radiative
transfer scheme [54] for the estimation of longwave radiation and the Dudhia scheme [55]
for the estimation of shortwave radiation. For the calculations of the planetary boundary
layer, the MYNN scheme [56] is used as it is recommended by many in the estimation of
wind at the wind turbine height level. NOAH land surface physics model and Kain-Fritsch
cumulus convections scheme [57] are used. Morrison 2-moment scheme [58] is used for
estimating cloud microphysics.

The WRF model was initiated every eighth day (including the initial one grace day for
spin-up) for a period of four years. The model simulations are considered apt for analysis
after 24 h of initialization and the next seven days are validated for their wind profiles at
the selected stations, seasonal wind estimations, surface temperature, and wind energy
estimations at 100 m height. The model domains are two-way nested to have an innermost
resolution of 4 km and the region extends from 90◦ E to 135◦ E and 2◦ N to 35◦ N covering
Southern China and the whole South China Sea (Figure 2). The top of the atmospheric
domain is at the 50 mb pressure level.
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2.3. Methodology

The simulation results are validated by comparing the satellite and in situ datasets.
For the analysis purposes, we have obtained long-term temporal resolution data from
nine locations (six offshore and three onshore) along the Southern China coast, with the
information listed in Table 1 and denoted in Figure 1b. For those offshore locations, three
sites along the Southern China coast and the other three sites further interior to the ocean are
considered. For onshore locations, three sites at the airports were analyzed. The correlation,
root mean square error (RMSE), and the standard deviation were analyzed with the Taylor
diagram [59] between different datasets and model simulations. Taylor diagrams bring
these statistical parameters together to evaluate the model performance.

Table 1. Coordinates of the locations used in the analysis.

No Coordinates Locations Category

1 24.667◦ N→ 113.60◦ E SHAOGUAN Onshore
2 26.633◦ N→ 118.15◦ E NANPING Onshore
3 25.850◦ N→ 114.95◦ E GANZHOU Onshore
4 24.775◦ N→ 118.84◦ E 100 km away from QUANZHOU Offshore
5 22.627◦ N→ 115.31◦ E 100 km away from SHANWEI Offshore
6 21.137◦ N→ 110.71◦ E 100 km away from NANSAN Offshore
7 20.667◦ N→ 116.72◦ E DONGSHA Offshore island
8 21.217◦ N→ 110.40◦ E ZHANJIANG Coastal
9 22.309◦ N→ 113.91◦ E HONGKONG Coastal

The interannual variability (IAV) is estimated by the coefficient of variability [60]
which is defined as the ratio between interannual standard deviation (σ = (xi − µ), i is in
years) at any location to the interannual mean (µ).

IAV =
σ

µ
∗ 100% (1)

We also analyzed the wind power density (WPD), which gives the measure of how
much energy is available at any location that can be extracted through a wind turbine [61]

WPD = 0.5 ρ A v3 (2)

where ρ is the air density (kg m−3), A is the cross-sectional area of the wind turbine (m2)
and v is the velocity (m s−1) measured at the height of wind turbine (i.e., 100 m here).
Having ρ and A as constant, we can write Equation (2) as

WPD ∝ v3 (3)

It should be noted that the maximum available wind energy that can be extracted by
wind turbines is governed by Betz’s law [62] and it is about 59.3% of the WPD.

3. Results
3.1. Comparison of Surface Winds

The hourly 10 m simulated wind speeds are extracted from the WRF simulations. The
10 m constrain is placed because of available long-term hourly data from the observation.
The simulated results are then averaged over a day and used for the analysis. Figure 3
compares the daily average from model results with NOAA integrated surface data for the
land and MERRA data for interior oceans. When comparing the simulation results, WRF
simulations forced with NCEP-FNL data are represented by WRF-N, WRF simulations
forced by ERA-Interim models are represented by WRF-E, and WRF simulations forced
with CFSv2 models are represented by WRF-C. In this section, we have taken three locations,
one along the onshore (Nanping), one along the coastal China (Hong Kong), and one at
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100 km offshore of Quanzhou. Additional locations and their analysis are provided in the
Appendix A (Figures A1–A3). The results in the Appendix A are equally valid. The model
output daily averaged wind speed shows a good correlation with the observational data
with narrow deviation from the diagonal favoring higher wind speed derived from the
simulations. The maximum wind speeds occur in the offshore region (including sites in
Appendix A Figures A1–A3) with overall wind speed ranging from 5 to 20 m s−1. For
coastal and interior China, the wind speed is lower with a range from 2 to 10 m s−1. Along
the coastal region, WRF-E has lower deviations from the one-to-one line, while WRF-N and
WRF-C simulations have a significant positive bias.
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The RMSE and correlation for the daily wind speed for the entire simulation period at
different locations are listed in Table 2 and compared in Figure 4 using Taylor diagrams. In
the Taylor diagrams, data from the NOAA surface data are considered as the observation
and the simulated results are validated against it. When compared with in situ observation,
WRF-E simulations show a better correlation and lower RMSE along the onshore region.
For the higher wind speed situations, the WRF-E has 0.5 m s−1 lower RMSE than WRF-N
simulations. In most of the locations, WRF-E simulations generally show a better correlation
with lower standard deviation and RMSE when compared to the other simulations. Taylor
diagrams for additional locations are given in .

Figure 5 compares the monthly mean observed wind speed for different sites with
simulations forced by three different initial and boundary conditions. Here, it is noted that
the models perform well in simulating the onshore and offshore winds (Figure 5a,b) very
well, but at the coastal sea, the models are inefficient in simulating the monthly winds.
The monthly variations in the wind speeds are absent in the interior and far-off China but
register highly in the coastal regions. The offshore region records the maximum winds in
the fall and winter seasons (from October to February), while the remaining months have
relatively low wind speeds. In the coastal region, the WRF-E can be seen closely matching
the available observational data than the other models. Additional locations are provided
in the , Figures A6 and A7.
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Table 2. Statistics of wind speed at different locations.

No Locations
RMSE Std Deviation Correlation Coefficient

WRF-E WRF-N WRF-C WRF-E WRF-N WRF-C WRF-E WRF-N WRF-C

1 SHAOGUAN 0.413 0.507 0.298 0.503 0.809 0.666 0.755 0.613 0.627

2 NANPING 0.291 0.280 0.393 0.278 0.288 0.404 0.778 0.676 0.693

3 GANZHOU 0.434 0.372 0.383 0.437 0.452 0.290 0.895 0.819 0.890

4 Offshore QUANZHOU 0.692 1.043 0.898 1.990 1.910 2.220 0.962 0.899 0.924

5 Offshore SHANWEI 1.178 1.630 1.222 0.598 1.053 0.982 0.886 0.792 0.816

6 Offshore NANSAN 1.121 1.446 1.183 0.898 1.324 1.338 0.902 0.812 0.837

7 DONGSHA 2.298 2.285 2.379 1.037 1.071 0.938 0.918 0.912 0.933

8 ZHANJIANG 0.552 0.728 0.817 0.765 0.642 0.683 0.707 0.712 0.687

9 HONGKONG 0.520 0.879 0.957 0.832 1.064 0.957 0.819 0.707 0.536
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0.692 1.043 0.898 1.990 1.910 2.220 0.962 0.899 0.924 

5 
Offshore 

SHANWEI 1.178 1.630 1.222 0.598 1.053 0.982 0.886 0.792 0.816 

6 
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3.2. Comparison of Wind Direction

The simulated 10 m level wind direction in Hong Kong is compared with the in situ
observation for the years 2015 and 2016 (Figure 6). The WRF-N and WRF-E models estimate
that most of the strong winds are north and northwestward, which agrees well with the
observation. In 2015, the models also reproduce weak eastward wind while observation
shows weak eastward and westward winds. In 2016, the WRF-N model reproduces
predominantly northward winds, while the WRF-E shows northward predominant and
southeastward mild winds. The observed winds are seen predominantly northwards with
the low frequent east and west winds. During these two years, the WRF-C simulation fails
to reproduce the direction and wind speed and it shows winds are only in the northward
direction. The similar analysis for Dongsha island for the years 2015 and 2016 is shown in
Figure 7. The simulations are also able to reproduce the observed northeastward winds.
The low frequent southwestwards winds are reproduced in WRF-N and WRF-E simulations
but absent in WRF-C simulations for both years. Additional analysis through wind rose
diagrams for different years are available in and Figure A9.
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3.3. Comparison of Surface Temperature

For the verification in simulating the surface temperature, we compared the model
results to that from MERRA reanalysis datasets for the temperature at the 2 m level, as
shown in Figure 8. The WRF-C simulation overestimates the surface temperature while the
WRF-N underestimates the same. Figure 8 shows that the simulations are able to capture
the temperature variations, with a bias of about 0.5 K for the WRF-E simulations. More
scatter plot analyses for temperature are added in Appendix A Figures A10–A12.
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Figure 8. Daily average temperature in (unit: K) from the models and observations at the locations
(a) Nanping, (b) Hong Kong, and (c) offshore Quanzhou.

The RMSE and correlation for the daily average surface temperature for the entire
simulation period at different locations are listed in Table 3 and three locations (Nanping,
Hong Kong, and offshore Quanzhou) are compared in Figure 9 using Taylor diagrams
(additional locations are available in Appendix A Figure A13). WRF-E simulations have
higher correlations and smaller standard deviations. It is again noted that the models
perform well in interior and offshore China but have lower accuracy in the coastal region.
The RMSE of the model simulated temperature is found to be ~1 K in WRF-E model
simulations and ~1.5 K in the WRF-N model simulations and the largest in the WRF-C
simulations. The correlation between observation and the WRF-N model simulations
is 0.7, while that for WRF-E simulations is 0.9 for the Hong Kong region. The WRF-C
model overestimates the temperature, the WRF-N underestimates, and WRF-E falls in a
good range.
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Table 3. Statistics of temperature at different locations.

No Locations
RMSE Std Deviation Correlation Coefficient

WRF-E WRF-N WRF-C WRF-E WRF-N WRF-C WRF-E WRF-N WRF-C

1 SHAOGUAN 0.574 2.331 2.586 6.635 6.377 5.554 0.997 0.952 0.915

2 NANPING 1.407 2.404 2.609 5.954 5.814 4.271 0.978 0.929 0.737

3 GANZHOU 2.101 2.803 3.662 5.351 6.046 7.500 0.958 0.871 0.875

4 Offshore QUANZHOU 0.660 2.150 3.510 5.850 6.010 3.740 0.994 0.936 0.609

5 Offshore SHANWEI 0.416 2.448 2.594 4.894 6.165 4.146 0.997 0.923 0.828

6 Offshore NANSAN 0.429 2.951 2.781 5.002 6.073 3.669 0.998 0.880 0.872

7 DONGSHA 1.137 1.148 1.913 2.909 2.877 1.277 0.932 0.930 0.917

8 ZHANJIANG 0.909 1.154 2.267 2.316 2.930 2.599 0.991 0.972 0.883

9 HONGKONG 2.050 3.320 3.250 2.270 3.320 3.330 0.902 0.739 0.587
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(a) Nanping, (b) Hong Kong, and (c) offshore Quanzhou.

3.4. Comparison of Seasonal Winds

For the South China Sea, the seasons are defined as follows: summer comprises June–
August, autumn in September–November, winter in December–February, followed by
spring in March–May. The seasonal variability in wind speed over the South China Sea and
the surrounding regions are mainly influenced by the Asian monsoon and the orography of
the region. Figure 10 compares the seasonal wind speeds from the models with those from
satellite QuikSCAT observation and other reanalysis datasets. The winds are calm during
the summer monsoon while they reach their maximum during the winter monsoonal
period. Both the WRF-N and WRF-E simulations are able to reproduce the seasonal wind
pattern with maximum winds occurring along the Taiwan Strait. The southern coast of
China receives the strongest winds with the persistent high reaching above 15 m s−1 in
winter. These winds start at the end of summer and continue till the end of winter. The
coastal region between Hainan and Taiwan are excellent locations for wind farm settings
due to the rich wind resource and shallow bathymetry.
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Figure 10. Average seasonal wind speed in m s−1 from the models and observations for all the
seasons along the study area. Spring is shown in first row, summer in second row, autumn in third
row and winter in fourth row. The first column represents ERA5 data, second column from NCEP
Reanalysis 2, third column from QuikScat, fourth column from WRF-N simulations, fifth from WRF-C
simulations and sixth from WRF-E simulations.

3.5. Interannual Variations and Wind Power Density

To optimize the windfarm setting, the interannual variations (IAV) of the wind speed
and the average wind power density in terms of cubic windspeed using Equation (3) are
examined. Since the WRF-E simulation has a better performance in reproducing the wind
field characteristics, the following analysis will be mainly based on the WRF-E results.
Figure 11a shows that the IAVs along the coastal region are low (<2%) and hence these
regions act as an excellent region for long-term offshore wind energy investments. The
open ocean has the highest interannual variations. Along the coastal regions, Taiwan Strait
has the maximum average wind power density and minimum interannual variations. This
region acts as an excellent region to obtain wind energy in the South China Sea. This region
is also identified as one of the best regions over the globe to extract wind energy in the
range higher than 600 W m−2 [63,64]. Followed by the Taiwan strait, the regions around
Guangdong province and the Hunan province also share some of the highest wind power
density amidst lower interannual variations in the South China Sea.
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4. Discussions

The main difference between analysis (NCEP-FNL) and reanalysis (ERA-Interim and
NCEP-CFSv2) data is the amount of observational data that enters in the data assimilation
step. For example, the analysis data are created very quickly while reanalysis data takes
more than 3–4 days. Therefore, biases are corrected, and more satellite data enters the
creation of reanalysis data [28]. Reanalysis data is dependent on the underlying forecast
models, data input sources, and assimilation systems [65]. The main advantage of the
ERA-Interim data is the inclusion of a four-dimensional variational analysis (4D-Var)
assimilation system of observed data, while the other reanalysis data have the 3D-Var
assimilation system. The 4D-Var assimilation system reduces the various biases in the
model output. The boundary conditions used by these reanalyses are different. For example,
SSTs for the NCEP-CFSv2 model are generated by an atmosphere-ocean coupling model,
while the ERA-Interim is run with observed SSTs [66].

Among the three reanalysis datasets used to simulate the wind resources along South
China Sea, ERA-Interim forced models produced the best results. However, along the
coastal regions, even ERA-Interim forced data could not reproduce the wind speed and
its evolution well. This mainly happens because the interactions between ocean and
atmosphere near coastal regions are complex and a standalone atmosphere model will not
be able to capture them. In future, this modeling approach can be extended with coupled
numerical models, where there exists constant interchange of data between atmosphere
and oceans, can be used to improve the wind resource estimations. Further, the innermost
domain of the current study is in the range of 4 km which is considered coarser for wind
farms as they require sub-kilometer scale wind resource estimations. With this study as the
base, more studies can be built by selecting the region of interest and performing higher
resolution modeling in a sub-kilometer scale.

With ERA-Interim data providing the best wind resource estimations over South
China Sea, the sensitivity of WRF model can be further analyzed by varying different
parameterization schemes for planetary boundary layer and land surface models. The
parametrization schemes for this study are chosen based on the literatures but different
combination of the schemes can provide different and improved results which can be
further explored.

5. Summary and Conclusions

In this study, the high-resolution WRF simulations over the South China Sea and
surrounding regions are conducted to study the sensitivity of various initial and boundary
conditions in simulating the near-surface wind and temperature fields. Three state-of-the-
art reanalysis datasets (NCEP-FNL, ERA-Interim, and NCEP CFSv2) are used as the forcing
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data for the numerical simulations between 2015 and 2018. The model results are analyzed
and compared with various observed datasets.

ERA-Interim-forced simulations performed well in comparison with other datasets.
The error from the simulations is lowest in the WRF-E models followed by WRF-N and
WRF-C simulations when comparing daily wind speeds. Over most of the locations
considered, WRF-E has a better correlation and lower RMSE among the three. The monthly
variations are also captured by the simulations along the coastal region but not for the
open ocean.

The simulations are also able to reproduce the wind directions along the coastal
China, with WRF-E and WRF-N simulations performing better followed by WRF-C. In a
seasonal characteristics of wind speed, WRF-E and WRF-N performed well while WRF-C
could not reproduce high wind speeds in the open ocean. The near-surface temperature
simulations show that the models are able to capture the variations with small deviation
from the observation data. Of all the models, the WRF-E simulations outputs are good when
compared with other simulations for temperature. The WRF-N has a negative temperature
bias, while the WRF-C has a positive bias in some regions. Seasonal variations show that
autumn and winter provide excellent conditions to extract wind energy along the South
China Sea. Furthermore, interannual variability of windspeed shows that the wind energy
near the onshore and coastal region is stable, with the coastal regions registering maximum
wind power density over the South China Sea. These coastal regions are excellent grounds
for future wind power investments as they have low interannual variability. Overall, WRF
forced with ERA-Interim data provided the best simulations followed by NCEP Final
analysis and CFSv2 data for the South China Sea, which indicates that the ERA-Interim
data can be used as the best initial and boundary data for further numerical modeling in
this region.
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Appendix A

This appendix provides additional figures to the validation of model results.
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Appendix A 
This appendix provides additional figures to the validation of model results. 
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