An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Determination of Slant Water Vapor
3.2. Construction of a Tomographic Model
3.3. Algebraic Reconstruction Technique
4. Experiments and Results
4.1. Model Configuration
4.2. Assessment of Results
4.2.1. Comparison of Model Performances Obtained Using Multi-GNSS and GPS Observations
4.2.2. Performances of Model Resulting from Using Surface Meteorological Data
4.2.3. Comparison of Model Performances over Rainy and Non-Rainy Periods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Global Climate Observing System (GCOS). Surface Vapour. 2021. Available online: https://gcos.wmo.int/en/essential-climate-variables/surface-vapour (accessed on 1 March 2022).
- Seko, H.; Shimada, S.; Nakamura, H.; Kato, T. Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front. Earth Planets Space 2000, 52, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Amer. Meteor. Soc. 2010, 84, 1205–1217. [Google Scholar] [CrossRef]
- De Haan, S.; van der Marel, H.; Barlag, S. Comparison of GPS slant delay measurements to a numerical model: Case study of a cold front passage. Phys. Chem. Earth 2002, 27, 317–322. [Google Scholar] [CrossRef]
- Ha, S.; Kuo, Y.; Guo, Y.; Rocken, C.; Van Hove, T. Comparison of GPS slant wet delay measurements with model simulations during the passage of a squall line. Geophys. Res. Lett. 2002, 29, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, B.; Chan, S.; Cao, Y.; Gao, Y.; Zhang, K. Analysis and modeling of water vapor and temperature changes in Hong Kong using 40-year radiosonde data: 1973–2012. Int. J. Clim. 2014, 35, 462–474. [Google Scholar] [CrossRef]
- Bender, M.; Dick, G.; Wickert, J.; Schmidt, T.; Song, S.; Gendt, G.; Ge, M.; Rothacher, M. Validation of GPS slant delays using water vapour radiometers and weather models. Meteorol. Z. 2008, 17, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Li, Y.; Zhang, K.; Liao, M.; Bai, W.; Liu, C.; Liu, Y.; Wang, X. An evaluation of Fengyun-3C radio occultation atmospheric profiles over 2015–2018. Remote Sens. 2020, 12, 2116. [Google Scholar] [CrossRef]
- Elliott, W.P. On detecting long-term changes in atmospheric moisture. Clim. Change 1995, 31, 349–367. [Google Scholar] [CrossRef]
- Babatunde, A.; Schulz, J. Analysis of water vapor over Nigeria using radiosonde and satellite data. J. Appl. Meteorol. Clim. 2012, 51, 1855–1866. [Google Scholar]
- Ho, S.; Zhou, X.; Kuo, Y.; Hunt, D.; Wang, J. Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens. 2010, 2, 1320. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Yoshihara, T.; Tsuda, T.; Hirahara, K. High time resolution measurements of precipitable water vapor from propagation delay of GPS satellite signals. Earth Planets Space 2000, 52, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, K.; Wu, S.; Fan, S.; Cheng, Y. Water vapor-weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend. J. Geophys. Res. Atmos. 2016, 121, 833–852. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, X.; Li, Z.; Zhang, S.; Li, H.; Zhang, J.; Yuan, H. The Performance of different mapping functions and gradient models in the determination of slant tropospheric delay. Remote Sens. 2020, 12, 130. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Cao, X.; Ge, Y.; Li, W. Assessment of the positioning performance and tropospheric delay retrieval with precise point positioning using products from different analysis centers. GPS Solut. 2020, 24, 12. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; He, C.; Cheng, Y.; Li, X. Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor. Atmos. Meas. Technol. 2017, 10, 2807–2820. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Zhang, K.; Shen, Z.; Wu, S.; Liu, Z.; Tong, L. A new adaptive absolute method for homogenizing GNSS-derived precipitable water vapor time series. Earth Space Sci. 2021, 8, e2021EA001716. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, K.; Wu, S.; Wan, M.; Lin, Y. Retrieving precipitable water vapor from real-time precise point positioning using VMF1/VMF3 forecasting products. Remote Sens. 2021, 13, 3245. [Google Scholar] [CrossRef]
- Rohm, W.; Yuan, Y.; Biadeglgne, B.; Zhang, K.; Marshall, J.L. Ground-based GNSS ZTD/IWV estimation system for numerical weather prediction in challenging weather conditions. Atmos. Res. 2014, 138, 414–426. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, K.; Wu, S.; Li, Z.; Cheng, Y.; Li, L.; Hong, Y. The correlation between GNSS-derived precipitable water vapor and sea surface temperature and its responses to El Niño–Southern Oscillation. Remote Sens. Environ. 2018, 216, 1–12. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Wu, S.; Zhang, K.; Chen, X.; Qiu, C.; Zhang, S.; Zhang, J.; Xie, M.; Li, L. Development of an improved model for prediction of short-term heavy precipitation based on GNSS-derived PWV. Remote Sens. 2020, 12, 4101. [Google Scholar] [CrossRef]
- Li, H.; Wang, X.; Choy, S.; Wu, S.; Jiang, C.; Zhang, J.; Qiu, C.; Li, L.; Zhang, K. A new cumulative anomaly-based model for the detection of heavy precipitation using GNSS-derived tropospheric products. IEEE Trans. Geosci. Remote Sens. 2021, 60. [Google Scholar] [CrossRef]
- Foster, J.; Bevis, M.; Schroeder, T.; Merrifield, M.; Yoaz, B.-S. El Niño, water vapor, and the Global Positioning System. Geophys. Res. Lett. 2000, 27, 2697–2700. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Ma, X.; Liu, Y.; Yao, W.; Yao, Y. A drought monitoring method based on precipitable water vapor and precipitation. J. Clim. 2020, 33, 10727–10741. [Google Scholar] [CrossRef]
- Yu, W.; Chen, B.; Dai, W.; Luo, X. Real-time precise point positioning using tomographic wet refractivity fields. Remote Sens. 2018, 10, 928. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Manning, T.; Wu, S.; Rohm, W.; Silcock, D.; Choy, S. Capturing the Signature of Severe Weather Events in Australia Using GPS Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1839–1847. [Google Scholar] [CrossRef]
- Flores, A.; Ruffini, G.; Rius, A. 4D tropospheric tomography using GPS slant wet delays. Ann. Geophys.-Germany 2000, 18, 223–234. [Google Scholar] [CrossRef]
- Champollion, C.; Masson, F.; Bouin, M.N.; Walpersdorf, A.; Doerflinger, E.; Bock, O.; Van Baelen, J. GPS water vapour tomography: Preliminary results from the ESCOMPTE field experiment. Atmos. Res. 2005, 74, 253–274. [Google Scholar] [CrossRef] [Green Version]
- Gradinarsky, L.P. Ground-Based GPS Tomography of water vapor: Analysis of simulated and real data. J. Meteorol. Soc. Jpn. 2004, 82, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Troller, M.; Geiger, A.; Brockmann, E.; Kahle, H.G. Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks. Geophys. J. Int. 2006, 167, 509–520. [Google Scholar] [CrossRef] [Green Version]
- Manning, T.; Zhang, K.; Rohm, W.; Choy, S.; Hurter, F. Detecting severe weather using GPS tomography: An Australian case study. J. Glob. Position. Syst. 2012, 11, 58–70. [Google Scholar] [CrossRef]
- Natalia, H.; Estera, T.; Gregor, M.; Witold, R.; Robert, W. Assimilation of GNSS tomography products into the weather research and forecasting model using radio occultation data assimilation operator. Atmos. Meas. Technol. 2019, 12, 4829–4848. [Google Scholar]
- Nan, D.; Zhang, S.; Wu, S.; Wang, X.; Zhang, K. A new approach for GNSS tomography from a few GNSS stations. Atmos. Meas. Technol. 2018, 11, 3511–3522. [Google Scholar]
- Zhu, M.; Liu, Z.; Hu, W. Observing water vapor variability during three super typhoon events in Hong Kong based on GPS water vapor tomographic modeling technique. J. Geophys. Res.-Atmos. 2020, 125, e2019JD032318. [Google Scholar] [CrossRef]
- Rohm, W.; Bosy, J. Local tomography troposphere model over mountains area. Atmos. Res. 2009, 93, 777–783. [Google Scholar] [CrossRef]
- Jiang, P.; Ye, S.R.; Liu, Y.Y.; Zhang, J.J.; Xia, P.F. Near real-time water vapor tomography using ground-based GPS and meteorological data: Long-term experiment in Hong Kong. Ann. Geophys.-Germany 2014, 32, 911–923. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.; Gradinarsky, L.P.; Elósegui, P.; Elgered, G.; Davis, J.L.; Rius, A. Sensing atmospheric structure: Tropospheric tomographic results of the small-scale GPS campaign at the Onsala Space Observatory. Earth Planets Space 2000, 52, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Rohm, W. The ground GNSS tomography–unconstrained approach. Adv. Space Res. 2013, 51, 501–513. [Google Scholar] [CrossRef]
- Bender, M.; Dick, G.; Wickert, J.; Ramatschi, M.; Ge, M.; Gendt, G.; Rothacher, M.; Raabe, A.; Tetzlaff, G. Estimates of the information provided by GPS slant data observed in Germany regarding tomographic applications. J. Geophys. Res. 2009, 114, D06303. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhao, Q. Maximally using GPS observation for water vapor tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7185–7196. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y. An improved troposphere tomographic approach considering the signals coming from the side face of the tomographic area. Ann. Geophys.-Germany 2017, 35, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ding, N.; Zhang, S. Inclusion of Side Signals on GNSS Water Vapor Tomography with a New Height Factor Model; Springer: Singapore, 2020; pp. 76–88. [Google Scholar]
- Yao, Y.B.; Zhao, Q.Z.; Zhang, B. A method to improve the utilization of GNSS observation for water vapor tomography. Ann. Geophys.-Germany 2016, 34, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Heublein, M.; Bradley, P.E.; Hinz, S. Observing geometry effects on a global navigation satellite system (GNSS)-based water vapor tomography solved by least squares and by compressive sensing. Ann. Geophys.-Germany 2020, 38, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, K. Local GPS tropospheric tomography. Earth Planets Space 2000, 52, 935–939. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Chen, Y.; Li, P. Wet refractivity tomography with an improved kalman-filter method. Adv. Atmos. Sci. 2006, 23, 693–699. [Google Scholar] [CrossRef]
- Rohm, W.; Zhang, K.; Bosy, J. Limited constraint, robust kalman filtering for GNSS troposphere tomography. Atmos. Meas. Technol. 2014, 7, 1475–1486. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.; Dick, G.; Ge, M.; Deng, Z.; Wickert, J.; Kahle, H.; Raabe, A.; Tetzlaff, G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, 47, 1704–1720. [Google Scholar] [CrossRef] [Green Version]
- Xiaoying, W.; Ziqiang, D.; Enhong, Z.; Fuyang, K.E.; Yunchang, C.; Lianchun, S. Tropospheric wet refractivity tomography using multiplicative algebraic reconstruction technique. Adv. Space Res. 2014, 53, 156–162. [Google Scholar] [CrossRef]
- Bender, M.; Stosius, R.; Zus, F.; Dick, G.; Wickert, J.; Raabe, A. GNSS water vapour tomography–Expected improvements by combining GPS, GLONASS and Galileo observations. Adv. Space Res. 2011, 47, 886–897. [Google Scholar] [CrossRef]
- Benevides, P.; Nico, G.; Catalao, J.; Miranda, P.M.A. Analysis of Galileo and GPS integration for GNSS tomography. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1936. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Cao, X.; Yao, W. Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations. Adv. Space Res. 2019, 63, 2836–2847. [Google Scholar] [CrossRef]
- Dong, Z.; Jin, S. 3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations. Remote Sens. 2018, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yao, Y.; Cao, X.; Zhou, F.; Xia, P. An optimal tropospheric tomography method based on the multi-GNSS observations. Remote Sens. 2018, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Haji-Aghajany, S.; Amerian, Y.; Verhagen, S.; Rohm, W.; Ma, H. An optimal troposphere tomography technique using the WRF model outputs and topography of the area. Remote Sens. 2020, 12, 1442. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, S.; Wu, S.; Wang, X.; Zhang, K. Adaptive node parameterization for dynamic determination of boundaries and nodes of GNSS tomographic models. J. Geophys. Res.-Atmos. 2018, 123, 1990–2003. [Google Scholar] [CrossRef]
- Perler, D.; Geiger, A.; Hurter, F. 4D GPS water vapor tomography: New parameterized approaches. J. Geodesy. 2011, 85, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Haji-Aghajany, S.; Amerian, Y.; Verhagen, S. B-spline function-based approach for GPS tropospheric tomography. GPS Solut. 2020, 24, 193–205. [Google Scholar] [CrossRef]
- Haji-Aghajany, S.; Amerian, Y.; Verhagen, S.; Rohm, W.; Schuh, H. The effect of function-based and voxel-based tropospheric tomography techniques on the GNSS positioning accuracy. J. Geodesy. 2021, 95, 78–94. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, N.; Zhang, Y.; Li, L.; Yang, X.; Zhao, Q. A new approach of the global navigation satellite system tomography for any size of GNSS network. Remote Sens. 2020, 12, 617. [Google Scholar] [CrossRef] [Green Version]
- Pany, T. Measuring and modeling the slant wet delay with GPS and the ECMWF NWP model. Phys. Chem. Earth. 2002, 27, 347–354. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, S.; Ding, N.; Holden, L.; Wang, X.; Zheng, N. GNSS-RS tomography: Retrieval of tropospheric water vapor fields using GNSS and RS observations. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–13. [Google Scholar] [CrossRef]
- Marion, H.; Fadwa, A.; Bastian, E.; Xiao, X.Z.; Stefan, H. Compressive sensing reconstruction of 3D wet refractivity based on GNSS and InSAR observations. J. Geodesy. 2019, 93, 197–217. [Google Scholar]
- Zhang, W.; Lou, Y.; Liu, W.; Huang, J.; Wang, Z.; Zhou, Y.; Zhang, H. Rapid troposphere tomography using adaptive simultaneous iterative reconstruction technique. J. Geodesy. 2020, 94, 76. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Li, Z.; Li, S.; Cong, Q.; Li, H.; Shaotian, Z.; Li, L. The impact of different ocean tide loading models on GNSS estimated zenith tropospheric delay using precise point positioning technique. Remote Sens. 2020, 12, 3080. [Google Scholar] [CrossRef]
- Saastamoinen, J. Atmospheric correction for the troposphere and stratosphere in radio ranging satellites. Use Artif. Satell. Geod. 1972, 15, 247–251. [Google Scholar]
- Böhm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Businger, S.; Chiswell, S.; Herring, T.A.; Ware, R.H. GPS meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 1994, 33, 379–386. [Google Scholar] [CrossRef]
- Chen, Y. Inversing the content of vapor in atmosphere by GPS observations. Mod. Surv. Mapp. 2005, 28, 3–6. [Google Scholar]
- Song, S.; Zhu, W.; Ding, J.; Peng, J. 3D water-vapor tomography with Shanghai GPS network to improve forecasted moisture field. Chin. Sci. Bull. 2006, 51, 607–614. [Google Scholar] [CrossRef]
- Elósegui, P.; Ruis, A.; Davis, J.L.; Ruffini, G.; Keihm, S.J.; Bürki, B.; Kruse, L.P. An experiment for estimation of the spatial and temporal variations of water vapor using GPS data. Phys. Chem. Earth 1998, 23, 125–130. [Google Scholar] [CrossRef]
- He, L.; Liu, L.; Su, X.; Xu, C.; Duan, P. Algebraic reconstruction algorithm of vapor tomography. Acta Geod. Geophys. 2015, 1, 32–38. [Google Scholar]
- Hansen, P.C.; Jørgensen, J.S. AIR Tools II: Algebraic iterative reconstruction methods, improved implementation. Numer. Algorithms 2017, 79, 107–137. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.M., Jr. Federal Meteorological Handbook No. 3: Rawinsonde and Pibal Obervations; Office of the Federal Coordinator for Meteorology; National Oceanic and Atmospheric Administration: Washington, DC, USA, 1997. [Google Scholar]
- Yao, Y.; Liu, C.; Xu, C.; Tan, Y.; Fang, M. A refined tomographic window for GNSS-derived water vapor tomography. Remote Sens. 2020, 12, 2999. [Google Scholar] [CrossRef]
Item | Strategy |
---|---|
Frequency | Dual frequency |
Elevation cutoff angle | 7° |
Satellite Ephemeris, Clock and Earth Rotation Parameters | SSR + BRDC |
Ionosphere | Ionosphere-free linear combination with dual frequency |
Troposphere | Estimate ZTD and horizontal gradient parameters |
Mapping function | NMF |
ZTD temporal resolution | 1 s |
Temporal resolution of gradient parameters | 1 s |
Scheme | Method |
---|---|
1 | GNSS (GPS)-SWD + Physical constraints |
2 | GNSS (GPS)-SWD + Physical constraints + meteorological data |
3 | GNSS(GPS)-SWD + GFS Background |
4 | GNSS (GPS)-SWD + GFS Background + meteorological data |
Scheme | Multi-GNSS | GPS-Only |
---|---|---|
1 | 1.797 | 1.763 |
2 | 1.633 | 1.617 |
3 | 0.990 | 0.952 |
4 | 0.981 | 0.950 |
Levels (hPa) | Scheme 1 | Scheme 2 | Difference | Scheme 3 | Scheme 4 | Difference |
---|---|---|---|---|---|---|
925 | 3.061 | 2.097 | 0.964 | 1.608 | 1.525 | 0.083 |
850 | 2.989 | 3.179 | −0.191 | 1.920 | 1.945 | −0.025 |
700 | 3.053 | 2.900 | 0.153 | 1.505 | 1.512 | −0.007 |
500 | 1.511 | 1.265 | 0.247 | 1.146 | 1.148 | −0.003 |
400 | 0.751 | 0.959 | −0.208 | 0.558 | 0.572 | −0.014 |
300 | 0.913 | 0.991 | −0.078 | 0.348 | 0.378 | −0.031 |
250 | 0.416 | 0.367 | 0.049 | 0.260 | 0.264 | −0.003 |
Periods | Rainy | Non-Rainy |
---|---|---|
RMSE | 0.817 | 1.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Zhang, K.; Li, H.; Wang, X.; Ding, N.; Shi, J.; Zhu, D.; Wu, S. An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data. Atmosphere 2022, 13, 752. https://doi.org/10.3390/atmos13050752
Tong L, Zhang K, Li H, Wang X, Ding N, Shi J, Zhu D, Wu S. An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data. Atmosphere. 2022; 13(5):752. https://doi.org/10.3390/atmos13050752
Chicago/Turabian StyleTong, Laga, Kefei Zhang, Haobo Li, Xiaoming Wang, Nan Ding, Jiaqi Shi, Dantong Zhu, and Suqin Wu. 2022. "An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data" Atmosphere 13, no. 5: 752. https://doi.org/10.3390/atmos13050752
APA StyleTong, L., Zhang, K., Li, H., Wang, X., Ding, N., Shi, J., Zhu, D., & Wu, S. (2022). An Investigation of Near Real-Time Water Vapor Tomography Modeling Using Multi-Source Data. Atmosphere, 13(5), 752. https://doi.org/10.3390/atmos13050752