CFD Study of Dry Pulmonary Surfactant Aerosols Deposition in Upper 17 Generations of Human Respiratory Tract
Abstract
:1. Introduction
2. Pulmonary Surfactant Aerosol Generation Methods
2.1. Respirable Dry Pulmonary Surfactant Aerosol Sizes
3. CFD Simulation of Respirable Pulmonary Surfactant Dry Aerosols
3.1. The SST Turbulence Model for the Airflow in Human Respiratory Airways
3.2. Lagrangian Particle Tracking in the Ansys CFX Code
4. Results and Discussions for Respirable Dry Surfactant Aerosols Deposition
4.1. Effect of Computational Particle Parcel Number on the Particle Deposition
4.2. Effect of Particle Size Distribution on the Particle Deposition Fraction
4.3. Effect of Inhalation Airflow Rate on the Particle Deposition Fraction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Symbols | Definitions | SI Unit |
and | Aerodynamic and geometrical particle diameters | µm |
Mass Median Aerodynamic Diameter defined as the diameter at which 50% of the particles by mass are larger and 50% are smaller | µm | |
Mass Median Geometrical Diameter based on the porous particle tap density (see Equation (1)) | µm | |
Inhalation gas flow (airflow) rate | L/min | |
Number of physical particles in each computational particle parcel | - | |
Total number of injected computational particle parcels in = 0.1 s | - | |
Inhaled particle mass flow rate | mg/s | |
Particle injection time duration (0.1 s) | s | |
Gas velocity at tracheal inlet | m/s | |
Standard deviation of MMAD measurement by Cascade impactor | µm | |
Aerodynamic particle (water) density | g/m3 | |
geometrical particle density (tap density for dry porous particle) | g/m3 |
References
- Gu, Q.; Qi, S.; Yue, Y.; Shen, J.; Zhang, B.; Sun, W.; Qian, W.; Islam, M.S.; Saha, S.C.; Wu, J. Structural and functional alterations of the tracheobronchial tree after left upper pulmonary lobectomy for lung cancer. J. Biomed. Eng. Online 2019, 18, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gu, Y.; Ristovski, Z. Numerical investigation of aerosol particle transport and deposition in realistic lung airway. In Proceedings of the International Conference on Computational Methods, Auckland, New Zealand, 14–17 July 2015. [Google Scholar]
- Ghosh, A.; Islam, M.S.; Saha, S.C. Targeted drug delivery of magnetic nano-particle in the specific lung region. Computation 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Ong, H.; Young, P.; Gu, Y. Euler–Lagrange approach to investigate respiratory anatomical shape effects on aerosol particle transport and deposition. Toxicol. Res. Appl. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Osman, N.; Kaneko, K.; Carini, V.; Saleem, I. Carriers for the Targeted Delivery of Aerosolized Macromolecules for Pulmonary Pathologies. Expert Opin. Drug Deliv. 2018, 15, 821–834. [Google Scholar] [CrossRef]
- Siekmeier, R.; Scheuch, G. Systemic Treatment by Inhalation of Macromolecules Principles, Problems, and Examples. J. Physiol. Pharmacol. 2008, 59, 53–79. [Google Scholar]
- Harkema, J.R.; Nikula, K.J.; Haschek, W.M. Respiratory System. In Fundamentals of Toxicologic Pathology, 3rd ed.; Wallig, M.A., Haschek, W.M., Rousseaux, C.G., Bolon, B., Eds.; Academic Press: Cambridge, MA, USA, 2018; Chapter 12; pp. 351–393. ISBN 978-0-12-809841-7. [Google Scholar]
- Gallo, R.L. Human skin is the largest epithelial surface for interaction with microbes. J. Investig. Dermatol. 2017, 137, 1213–1214. [Google Scholar] [CrossRef] [Green Version]
- Chalon, J.; Ali, M.; Ramanathan, S.; Turndorf, H. The humidification of anaesthetic gases: Its importance and control. J. Can. Anaesth. Soc. J. 1979, 26, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.F.; Dobbs, L.G. Isolation and culture of alveolar epithelial Type I and Type II cells from rat lungs. In Epithelial Cell Culture Protocols; Springer: Berlin/Heidelberg, Germany, 2012; pp. 145–159. [Google Scholar]
- Mason, G.R.; Peters, A.M.; Bagdades, E.; Myers, M.J.; Snook, M.; Hughes, J.M. Evaluation of Pulmonary Alveolar Epithelial Integrity by the Detection of Restriction to Diffusion of Hydrophilic Solutes of Different Molecular Sizes. Clin. Sci. 2001, 100, 231–236. [Google Scholar] [CrossRef]
- Islam, M.S.; Larpruenrudee, P.; Paul, A.R.; Paul, G.; Gemci, T.; Gu, Y.; Saha, S.C. SARS CoV-2 aerosol: How far it can travel to the lower airways? Phys. Fluids 2021, 33, 061903. [Google Scholar] [CrossRef]
- Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute Respiratory Distress Syndrome. Nat. Rev. Dis. Premiers 2019, 5, 1–22. [Google Scholar] [CrossRef]
- Yeates, D.B. Surfactant Aerosol Therapy for nRDS and ARDS. In Inhalation Aerosols, Physical and Biological Basis for Therapy, 3rd ed.; Hickey, A.J., Mansour, H.M., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Chapter 21; pp. 327–342. ISBN 9781138064799. [Google Scholar]
- Mazela, J.; Merritt, T.A.; Finer, N.N. Aerosolized Surfactants. Curr. Opin. Pediatr. 2007, 19, 155–162. [Google Scholar] [CrossRef]
- Dijk, P.H.; Heikamp, A.; Oetomo, S.M. Surfactant Nebulisation: Lung Function, Surfactant Distribution and Pulmonary Blood Flow Distribution in Lung Lavaged Rabbits. Intensive Care Med. 1997, 23, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Yeates, D.B.; Heng, X. Generation of Respirable Particles from Surfactant Suspensions and Viscous Solutions at High Dose Rates. In Proceedings of the Drug Delivery to The Lungs (DDL27) Conference, Edinburgh, UK, 6–8 December 2017; pp. 205–208. [Google Scholar]
- Heng, X.; Yeates, D.B. Generation of High Concentrations of Respirable Solid-Phase Aerosols from Viscous Fluids. Aerosol Sci. Technol. 2018, 52, 933–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianco, F.; Ricci, F.; Catozzi, C.; Murgia, X.; Schlun, M.; Buckolski, A.; Hetzer, U.; Bonelli, S.; Lombardini, M.; Pasini, E.; et al. From Bench to Bedside: In Vitro and In Vivo Evaluation of a Neonate-Focused Nebulized Surfactant Delivery Strategy. Respir. Res. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Thiel, C.G. Cascade Impactor Data and the Lognornal Distribution: Nonlinear Regression for a Better Fit. J. Aerosol Med. 2002, 15, 369–378. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Chen, H.; Zhu, L. Naringenin-Loaded Dipalmitoylphosphatidylcholine Phytosome Dry Powders for Inhaled Treatment of Acute Lung Injury. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33. [Google Scholar] [CrossRef]
- Vanbever, R.; Mintzes, J.D.; Wang, J.; Nice, J.; Chen, D.; Batycky, R.; Langer, R.; Edwards, D.A. Formulation and Physical Characterization of Large Porous Particles for Inhalation. Pharm. Res. 1999, 16, 1735–1742. [Google Scholar] [CrossRef]
- Chow, M.Y.T.; Qiu, Y.; Lo, F.F.K.; Lin, H.H.S.; Chan, H.-K.; Kwok, P.C.L.; Lam, J.K.W. Inhaled Powder Formulation of Naked siRNA Using Spray Drying Technology with L-leucine as Dispersion Enhancer. Int. J. Pharm. 2017, 530, 40–52. [Google Scholar] [CrossRef]
- Gradon, L.; Sosnowski, T.R. Formation of Particles for Dry Powder Inhalers. Adv. Powder Technol. 2014, 25, 43–55. [Google Scholar] [CrossRef]
- D’Addio, S.M.; Yan Chan, J.G.; Lip Kwok, P.C.; Prud’homme, R.K.; Chan, H.-K. Constant Size, Variable Density Aerosol Particles by Ultrasonic Spray Freeze Drying. Int. J. Pharm. 2012, 427, 185–191. [Google Scholar] [CrossRef]
- Aramendia, I.; Fernandez-Gamiz, U.; Lopez-Arraiza, A.; Rey-Santano, C.; Mielgo, V.; Basterretxea, F.J.; Sancho, J.; Homez-Solaetxe, M.A. Experimental and Numerical Modeling of Aerosol Delivery for Preterm Infants. Int. J. Environ. Res. Public Health 2018, 15, 423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadota, K.; Sosnowski, T.R.; Tobita, S.; Tachibana, I.; Tse, J.Y.; Uchiyama, H.; Tozuka, Y. A Particle Technology Approach toward Designing Dry-Powder Inhaler Formulations for Personalized Medicine in Respiratory Diseases. Adv. Powder Technol. 2020, 31, 219–226. [Google Scholar] [CrossRef]
- Medvedev, A.E.; Fomin, V.M.; Gafurova, P.S. Three-Dimensional Model of the Human Bronchial Tree—Modeling of the Air Flow in Normal and Pathological Cases. J. Appl. Mech. Tech. Phys. 2020, 61, 1–13. [Google Scholar] [CrossRef]
- Islam, M.S.; Paul, G.; Ong, H.X.; Young, P.M.; Gu, Y.T.; Saha, S.C. A Review of respiratory Anatomical Development, Air Flow Characterization and Particle Deposition. Int. J. Environ. Res. Public Health 2020, 17, 380. [Google Scholar] [CrossRef] [Green Version]
- Gemci, T.; Ponyavin, V.; Chen, Y.; Chen, H.; Collins, R. Computational Model of Airflow in Upper 17 Generations of Human Respiratory Tract. J. Biomech. 2008, 41, 2047–2054. [Google Scholar] [CrossRef]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Gu, Y.T. Pulmonary Aerosol Transport and Deposition Analysis in Upper 17 Generations of the Human Respiratory Tract. J. Aerosol Sci. 2017, 108, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Saha, S.C.; Sauret, E.; Gemci, T.; Yang, I.A.; Gu, Y.T. Ultrafine Particle Transport and Deposition in a Large Scale 17-Generation Lung Model. J. Biomech. 2017, 64, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Zidowitz, S.; Kriete, A.; Denhard, T.; Krass, S.; Peitgen, H.-O. A Digital Reference Model of the Human Bronchial Tree. Comput. Med. Imaging Graph. 2004, 28, 203–211. [Google Scholar] [CrossRef]
- Ansys Technical Brief CFX-SST: Innovative Turbulence Modeling: SST Model in Ansys® CFX®. December 2006. Available online: http://fluid.itcmp.pwr.wroc.pl/~pblasiak/CFD/UsefulInformation/sst.pdf (accessed on 28 April 2022).
- Ansys CFX-Solver Modeling Guide (Release 19.2); ANSYS, Inc.: Canonsburg, PA, USA, 2018.
- Horsfield, K.; Dart, G.; Olson, D.E.; Filley, G.F.; Cumming, G. Models of the Human Bronchial Tree. J. Appl. Physiol. 1971, 31, 207–217. [Google Scholar] [CrossRef]
- Ma, B.; Lutchen, K.R. An Anatomically Based Hybrid Computational Model of the Human Lung and its Application to Flow Frequency Oscillatory Mechanics. Ann. Biomed. Eng. 2006, 34, 1691–1704. [Google Scholar] [CrossRef]
- Menter, F.R. Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993. [Google Scholar]
- Bardina, J.E.; Huang, P.G.; Coakley, T.J. Turbulence Modeling, Validation, Testing and Development; NASA Technical Memorandum 110446; NASA Ames Research Center: Moffett Field, CA, USA, 1997.
- Kolanjiyil, A.V.; Kleinstreuer, C. Computational Analysis of Aerosol-Dynamics in a Human Whole-Lung Airway Model. J. Aerosol Sci. 2017, 114, 301–316. [Google Scholar] [CrossRef]
- Haddrell, A.E.; Lewis, D.; Church, T.; Vehring, R.; Murnane, D.; Reid, J.P. Pulmonary Aerosol Delivery and The Importance of Growth Dynamics. Ther. Deliv. 2017, 8, 1051–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnowski, T.R. Powder Particles and Technologies for Medicine Delivery to the Respiratory System: Challenges and Opportunities. KONA Powder Part. J. 2018, 35, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Kleinstreuer, C.; Kim, C.S. Comparison of Analytical and CFD Models with Regard to Micron Particle Deposition in a Human 16-Generation Tracheobronchial Airway Model. Aerosol Sci. 2009, 40, 16–28. [Google Scholar] [CrossRef]
- Kim, C.S.; Hu, S.-C. Total Respiratory Tract Deposition of Fine Micrometer-Sized Particles in Healthy Adults: Empirical Equations for Sex and Breathing Pattern. J. Appl. Physiol. 2006, 101, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Foord, N.; Black, A.; Walsh, M. Regional Deposition of 2.5–7.5 µm Diameter Inhaled Particles in Healthy Male Non-Smokers. J. Aerosol Sci. 1978, 9, 343–357. [Google Scholar] [CrossRef]
- Emmett, P.C.; Aitken, R.J. Measurement of the Total and Regional Deposition of Inhaled Particles in the Human Respiratory Tract. J. Aerosol Sci. 1982, 13, 549–560. [Google Scholar] [CrossRef]
- Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C.F.; Stahlhofen, W. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 µm. J. Aerosol Sci. 1986, 17, 811–825. [Google Scholar] [CrossRef]
- Conway, J.; Fleming, J.; Majoral, C.; Katz, I.; Perchet, D.; Peebles, C.; Tossici-Bolt, L.; Collier, L.; Caillibotte, G.; Pichelin, M.; et al. Controlled, Parametric, Individualized, 2-D and 3-D Imaging Measurements of Aerosol Deposition in the Respiratory Tract of Healthy Human Subjects for Model Validation. J. Aerosol Sci. 2012, 52, 1–17. [Google Scholar] [CrossRef]
- Darquenne, C.; Lamm, W.J.; Fine, J.M.; Corley, R.A.; Glenny, R.W. Total and Regional Deposition of Inhaled Aerosols in Supine Healthy Subjects and Subjects with Mild-to-Moderate COPD. J. Aerosol Sci. 2016, 99, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Katz, I.; Pichelin, M.; Montesantos, S.; Murdock, A.; Fromont, S.; Veneges, J.; Caillibotte, G. The Influence of Lung Volume during Imaging on CFD with Realistic Airway Models. Aerosol Sci. Technol. 2016. [Google Scholar] [CrossRef] [Green Version]
- Lippmann, M. Regional Deposition of Particles in the Human Respiratory Tract. In Handbook of Physiology—Reaction to Environmental Agent; Lee, D.H.K., Ed.; American Physiology Society: Bethesda, MD, USA, 1977; pp. 213–232. [Google Scholar]
- Graham, D.I.; Moyeed, R.A. How many particles for my Lagrangian simulations? Powder Technol. 2002, 125, 179–186. [Google Scholar] [CrossRef]
- Pascal, P.; Oesterle, B. On the Dispersion of Discrete Particles Moving in a Turbulent Shear Flow. Int. J. Multiph. Flow 2000, 26, 293–325. [Google Scholar] [CrossRef]
- Heyder, J.; Armbruster, L.; Gebhart, J.; Grein, E.; Stahlhofen, W. Total Deposition of Aerosol Particles in the Human Respiratory Tract for Nose and Mouth Breathing. J. Aerosol Sci. 1975, 6, 311–328. [Google Scholar] [CrossRef]
- Hamm, H.; Fabel, H.; Bartsch, W. The Surfactant System of the Adult Lung: Physiology and Clinical Perspectives. Clin. Investig. 1992, 70, 637–657. [Google Scholar] [CrossRef]
- Richman, P.S.; Spragg, R.G.; Robertson, B.; Merritt, T.A.; Cursted, T. The Adult Respiratory Distress Syndrome: First Trials with Surfactant Replacement. Eur. Respir. J. 1989, 2 (Suppl. S3), 109–111. [Google Scholar]
CFD Test Case No. | Dry Surfactant Aerosol Properties | Deposition Fraction (%) | ||
---|---|---|---|---|
M-1 | = 4.503 m/s | = 2.6 µm | = 984 | 73.48 |
M-2 | = 3.68 µm | = 694 | 73.48 | |
P-1 | = 4.503 m/s | = 1.9 µm | = 984 | 74.65 |
Deposition Studies | In-Vivo or CFD | MMAD (SD 3) (µm) | Inhalation Flow Rate (L/min) | Particle Deposition Fraction (%) | Comments |
---|---|---|---|---|---|
Foord et al. [45] (see their Table 4) | In-Vivo | 3.5 monodisperse | 50 | 70 | Particle deposition in pulmonary and tracheobronchial regions at TV 2 = 1 L and f 3 = 25 breaths/min (3 subjects on average) |
Emmett & Aitken [46] (see their Table 2) | In-Vivo | 3.5 monodisperse | 30 | 69 | Particle deposition in tracheobronchial and alveolar region (3 subjects on average) |
Heyder et al. [47] (see their Table 3) | In Vivo | 3.0 monodisperse | 45 | 19 | Particle deposition in laryngeal, bronchial, and alveolar regions for nasal breathing experiment with TV 1 = 1.5 L and f 2 = 15 breaths/min |
Kim and Hu [44] (see their Table 2) | In Vivo | 3.0 monodisperse | 30 | 68 | Particle deposition in total lung region with TV 1 = 1.5 L and f 2 = 10 breaths/min (8 male subjects on average) |
76 | Particle deposition in total lung region with TV 1 = 1.5 L f 2 = 10 breaths/min (7 female subjects on average) | ||||
Zhang et al. [43] (see their Figure 3) | CFD (Symmetrical G0–G16 model segmented into 5 levels) | 3.0 monodisperse | 30 | 10 | Each level represented by a TBU (triple-bifurcation unit) and these scaled TBUs extend in the series and parallel in order to accommodate the TB (tracheobronchial) tree. Symmetrical Weibel Type-A 16-generation model segmented into 5 levels. |
Conway et al. [48] (see their Figure 6 | In-Vivo | 3.1 (SD = 1.5) | 18 | 80 | Particle deposition in total thoracic region for shallow breathing pattern with TV 1 = 0.6 L (3 male subjects on average) |
91 | Particle deposition in total thoracic region for deep breathing pattern with TV 1 = 1 L (3 male subjects on average) | ||||
Darquenne et al. [49] (see their Table A1) | In-Vivo | 2.9 monodisperse | 45 | 79 | Particle deposition in nose and whole-lung region for nose breathing (9 healthy subjects on average) |
Katz et al. [50] (see their Table 5) | CFD (G0–G7 generations) | 3.0 monodisperse | 30 | 15 | Particle deposition in G0–G7 generations for MLV 4 airway models with an average of 30 airway exits (24 subjects on average) |
9 | Particle deposition in G0–G7 generations for TLC 5 irway models with an average of 70 airway exits (24 subjects average) | ||||
Kolanjiyil and Kleinstreuer [40] (see their Figure 8) | CFD (Dual-path whole lung model) | 3.0 monodisperse | 15 | 57 | Particle deposition in tracheobronchial and bronchoalveolar regions at TV 1 = 1 L. In their model, two outlets of the upper airway model are extended by attaching scaled triple bifurcation units (TBUs) in the series. |
Current Study (see Table 1 for detail) | CFD (Realistic G0–G17) | 2.6 (SD = 1.9) | 44 | 75 | Particle deposition in realistic G0–G17 generations with 720 bronchi outlets. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gemci, T.; Ponyavin, V.; Collins, R.; Corcoran, T.E.; Saha, S.C.; Islam, M.S. CFD Study of Dry Pulmonary Surfactant Aerosols Deposition in Upper 17 Generations of Human Respiratory Tract. Atmosphere 2022, 13, 726. https://doi.org/10.3390/atmos13050726
Gemci T, Ponyavin V, Collins R, Corcoran TE, Saha SC, Islam MS. CFD Study of Dry Pulmonary Surfactant Aerosols Deposition in Upper 17 Generations of Human Respiratory Tract. Atmosphere. 2022; 13(5):726. https://doi.org/10.3390/atmos13050726
Chicago/Turabian StyleGemci, Tevfik, Valery Ponyavin, Richard Collins, Timothy E. Corcoran, Suvash C. Saha, and Mohammad S. Islam. 2022. "CFD Study of Dry Pulmonary Surfactant Aerosols Deposition in Upper 17 Generations of Human Respiratory Tract" Atmosphere 13, no. 5: 726. https://doi.org/10.3390/atmos13050726
APA StyleGemci, T., Ponyavin, V., Collins, R., Corcoran, T. E., Saha, S. C., & Islam, M. S. (2022). CFD Study of Dry Pulmonary Surfactant Aerosols Deposition in Upper 17 Generations of Human Respiratory Tract. Atmosphere, 13(5), 726. https://doi.org/10.3390/atmos13050726