Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (63)

Search Parameters:
Keywords = particle deposition in airways

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11145 KB  
Article
Mechanistic Analysis of Fluid Dynamics and Multifactorial Impact Mechanisms in Inhaled Pharmaceutical Deposition for Chronic Respiratory Diseases
by Fuli Hu, Songhua Ma and Tianliang Hu
Bioengineering 2025, 12(6), 643; https://doi.org/10.3390/bioengineering12060643 - 12 Jun 2025
Cited by 2 | Viewed by 920
Abstract
The clinical efficacy of inhalation therapy in chronic respiratory diseases is fundamentally constrained by particle deposition patterns. This study employs computational fluid dynamics (CFD) and response surface methodology (RSM) to elucidate the mechanistic interplay of deposition determinants through multifactorial sensitivity mapping. The study [...] Read more.
The clinical efficacy of inhalation therapy in chronic respiratory diseases is fundamentally constrained by particle deposition patterns. This study employs computational fluid dynamics (CFD) and response surface methodology (RSM) to elucidate the mechanistic interplay of deposition determinants through multifactorial sensitivity mapping. The study comprises two key components: (i) the development of an accurate three-dimensional respiratory airway model spanning from the oral cavity to the fifth-generation bronchi and (ii) the integration of a Box–Behnken Design (BBD) experimental framework with computational fluid dynamics simulations. Furthermore, we developed a multifactorial regression model to analyze the synergistic interactions among deposition determinants. The study demonstrated a positive correlation between breath-holding time and drug deposition efficiency, revealing a hierarchical order of critical parameters: peak flow rate > breath-holding time > particle diameter. These findings have important implications for optimizing respiratory drug delivery strategies in clinical settings. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

20 pages, 3533 KB  
Review
Forward Computational Modeling of Respiratory Airflow
by Emmanuel A. Akor, Bing Han, Mingchao Cai, Ching-Long Lin and David W. Kaczka
Appl. Sci. 2024, 14(24), 11591; https://doi.org/10.3390/app142411591 - 12 Dec 2024
Cited by 3 | Viewed by 3249
Abstract
The simulation of gas flow in the bronchial tree using computational fluid dynamics (CFD) has become a useful tool for the analysis of gas flow mechanics, structural deformation, ventilation, and particle deposition for drug delivery during spontaneous and assisted breathing. CFD allows for [...] Read more.
The simulation of gas flow in the bronchial tree using computational fluid dynamics (CFD) has become a useful tool for the analysis of gas flow mechanics, structural deformation, ventilation, and particle deposition for drug delivery during spontaneous and assisted breathing. CFD allows for new hypotheses to be tested in silico, and detailed results generated without performing expensive experimental procedures that could be potentially harmful to patients. Such computational techniques are also useful for analyzing structure–function relationships in healthy and diseased lungs, assessing regional ventilation at various time points over the course of clinical treatment, or elucidating the changes in airflow patterns over the life span. CFD has also allowed for the development and use of image-based (i.e., patient-specific) models of three-dimensional (3D) airway trees with realistic boundary conditions to achieve more meaningful and personalized data that may be useful for planning effective treatment protocols. This focused review will present a summary of the techniques used in generating realistic 3D airway tree models, the limitations of such models, and the methodologies used for CFD airflow simulation. We will discuss mathematical and image-based geometric models, as well as the various boundary conditions that may be imposed on these geometric models. The results from simulations utilizing mathematical and image-based geometric models of the airway tree will also be discussed in terms of similarities to actual gas flow in the human lung. Full article
(This article belongs to the Special Issue Applications of Fluid Mechanics in Biomedical Engineering)
Show Figures

Figure 1

22 pages, 7402 KB  
Article
Development of Nanocomposite Microspheres for Nasal Administration of Deferiprone in Neurodegenerative Disorders
by Radka Boyuklieva, Plamen Katsarov, Plamen Zagorchev, Silviya Abarova, Asya Hristozova and Bissera Pilicheva
J. Funct. Biomater. 2024, 15(11), 329; https://doi.org/10.3390/jfb15110329 - 5 Nov 2024
Cited by 2 | Viewed by 2042
Abstract
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the [...] Read more.
Elevated brain iron levels are characteristic of many neurodegenerative diseases. As an iron chelator with short biological half-life, deferiprone leads to agranulocytosis and neutropenia with a prolonged therapeutic course. Its inclusion in sustained-release dosage forms may reduce the frequency of administration. On the other hand, when administered by an alternative route of administration, such as the nasal route, systemic exposure to deferiprone will be reduced, thereby reducing the occurrence of adverse effects. Direct nose-to-brain delivery has been raised as a non-invasive strategy to deliver drugs to the brain, bypassing the blood–brain barrier. The aim of the study was to develop and characterize nanocomposite microspheres suitable for intranasal administration by combining nano- and microparticle-based approaches. Nanoparticles with an average particle size of 213 ± 56 nm based on the biodegradable polymer poly-ε-caprolactone were developed using the solvent evaporation method. To ensure the deposition of the particles in the nasal cavity and avoid exhalation or deposition into the small airways, the nanoparticles were incorporated into composite structures of sodium alginate obtained by spray drying. Deferiprone demonstrated sustained release from the nanocomposite microspheres and high iron-chelating activity. Full article
(This article belongs to the Special Issue Medical Application of Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

14 pages, 5518 KB  
Article
In Vitro Analysis of Aerodynamic Properties and Co-Deposition of a Fixed-Dose Combination of Fluticasone Furoate, Umeclidinium Bromide, and Vilanterol Trifenatate
by Kittipong Maneechotesuwan, Somchai Sawatdee and Teerapol Srichana
Pharmaceutics 2024, 16(10), 1334; https://doi.org/10.3390/pharmaceutics16101334 - 18 Oct 2024
Viewed by 2462
Abstract
Background/Objectives: Effective airway delivery of a fixed-dose combination of triple-aerosolized inhaled corticosteroid (ICS)/long-acting beta agonist (LABA)/long-acting muscarinic antagonist (LAMA) is likely to positively affect therapeutic responses predicted in patients with asthma and chronic obstructive pulmonary disease. This study aimed to conduct in vitro [...] Read more.
Background/Objectives: Effective airway delivery of a fixed-dose combination of triple-aerosolized inhaled corticosteroid (ICS)/long-acting beta agonist (LABA)/long-acting muscarinic antagonist (LAMA) is likely to positively affect therapeutic responses predicted in patients with asthma and chronic obstructive pulmonary disease. This study aimed to conduct in vitro fluticasone furoate, vilanterol trifenatate, and umeclidinium bromide depositions in a Next Generation Impactor. The aerodynamic properties of these inhaled medications influence the spatial distribution and drug abundance, particularly in the smaller airways, to reverse or alleviate disease pathology. Methods: The Next Generation Impactor was used to demonstrate the aerodynamic particle size distributions of fluticasone furoate, vilanterol trifenatate, and umeclidinium bromide delivered from a dry powder inhaler at different flow rates across all stages of the impactors. This in vitro study analyzed the distribution pattern of individual drug components to simulate mono-component deposition and co-deposition in the official model in the United States Pharmacopeia. An Andersen cascade impactor together with scanning electron microscope–energy-dispersive X-ray was employed to observe the drug deposition on each stage of the impactor. Results: We found that the distribution pattern of each component at the same cascade level was comparable, and the aerosol particles of the three drugs reached the in vitro representation of the lower airway compartment. The specified flow rates generated the desired fine particle fraction, fine particle dose, and mass median aerodynamic diameter. Our results also demonstrated visualized deposition patterns of the delivered drugs from different stages of the cascade impactor that may predict deposition as it occurs in vivo. Conclusions: Spatial distribution and abundance of ICS/LABA/LAMA in the same cascade levels were closely comparable, and the aerosol particles were able to reach the small aerosol-sized cascades at the lower levels to some extent. Full article
Show Figures

Figure 1

24 pages, 1914 KB  
Review
Modeling Realistic Geometries in Human Intrathoracic Airways
by Francesca Pennati, Lorenzo Aliboni and Andrea Aliverti
Diagnostics 2024, 14(17), 1979; https://doi.org/10.3390/diagnostics14171979 - 7 Sep 2024
Cited by 1 | Viewed by 2507
Abstract
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes [...] Read more.
Geometrical models of the airways offer a comprehensive perspective on the complex interplay between lung structure and function. Originating from mathematical frameworks, these models have evolved to include detailed lung imagery, a crucial enhancement that aids in the early detection of morphological changes in the airways, which are often the first indicators of diseases. The accurate representation of airway geometry is crucial in research areas such as biomechanical modeling, acoustics, and particle deposition prediction. This review chronicles the evolution of these models, from their inception in the 1960s based on ideal mathematical constructs, to the introduction of advanced imaging techniques like computerized tomography (CT) and, to a lesser degree, magnetic resonance imaging (MRI). The advent of these techniques, coupled with the surge in data processing capabilities, has revolutionized the anatomical modeling of the bronchial tree. The limitations and challenges in both mathematical and image-based modeling are discussed, along with their applications. The foundation of image-based modeling is discussed, and recent segmentation strategies from CT and MRI scans and their clinical implications are also examined. By providing a chronological review of these models, this work offers insights into the evolution and potential future of airway geometry modeling, setting the stage for advancements in diagnosing and treating lung diseases. This review offers a novel perspective by highlighting how advancements in imaging techniques and data processing capabilities have significantly enhanced the accuracy and applicability of airway geometry models in both clinical and research settings. These advancements provide unique opportunities for developing patient-specific models. Full article
(This article belongs to the Special Issue Technologies in the Diagnosis of Lung Diseases)
Show Figures

Figure 1

20 pages, 5753 KB  
Article
A Critical Analysis of the CFD-DEM Simulation of Pharmaceutical Aerosols Deposition in Upper Intra-Thoracic Airways: Considerations on Aerosol Transport and Deposition
by Georgi H. Spasov, Riccardo Rossi, Andrea Vanossi, Ciro Cottini and Andrea Benassi
Pharmaceutics 2024, 16(9), 1119; https://doi.org/10.3390/pharmaceutics16091119 - 24 Aug 2024
Cited by 3 | Viewed by 2296
Abstract
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict [...] Read more.
The reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions. Even if the total deposition compares very well with the reference data, it is clear from the present work how local deposition results can depend significantly upon spatial discretization and boundary conditions adopted to represent the respiratory act. The modeling of turbulent fluctuations in the airflow is also found to impact the local deposition and, to a minor extent, the flow characteristics at the inlet of the computational domain. Using the CFD-DEM model, it was also possible to calculate the airflow and particles splitting at bifurcations, which were found to depart from the assumption of being equally distributed among branches adopted by some of the simplified deposition models. The results thus suggest the need for further studies towards improving the quantitative prediction of aerosol transport and deposition in the human airways. Full article
Show Figures

Figure 1

23 pages, 7853 KB  
Article
Gold Nanoparticles: Tunable Characteristics and Potential for Nasal Drug Delivery
by Aida Maaz, Ian S. Blagbrough and Paul A. De Bank
Pharmaceutics 2024, 16(5), 669; https://doi.org/10.3390/pharmaceutics16050669 - 16 May 2024
Cited by 3 | Viewed by 2354
Abstract
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of [...] Read more.
A general procedure to prepare gold nanourchins (GNUs) via a seed-mediated method was followed using dopamine hydrochloride as a reducing agent and silver nitrate salt (AgNO3) as a shape-directing agent. The novelty of this study comes from the successful incorporation of the prepared gold urchins as an aqueous suspension in a nasal pressurized metered dose inhaler (pMDI) formulation and the investigation of their potential for olfactory targeting for direct nose-to-brain drug delivery (NTBDD). The developed pMDI formulation was composed of 0.025% w/w GNUs, 2% w/w Milli-Q water, and 2% w/w EtOH, with the balance of the formulation being HFA134a propellant. Particle integrity and aerosolization performance were examined using an aerosol exposure system, whereas the nasal deposition profile was tested in a sectioned anatomical replica of human nasal airways. The compatibility of the gold dispersion with the nasal epithelial cell line RPMI 2650 was also investigated in this study. Colloidal gold was found to be stable following six-month storage at 4 °C and during the lyophilization process utilizing a pectin matrix for complete re-dispersibility in water. The GNUs were intact and discrete following atomization via a pMDI, and 13% of the delivered particles were detected beyond the nasal valve, the narrowest region in the nasal cavity, out of which 5.6% was recovered from the olfactory region. Moreover, the formulation was found to be compatible with the human nasal epithelium cell line RPMI 2650 and excellent cell viability was observed. The formulated GNU-HFA-based pMDI is a promising approach for intranasal drug delivery, including deposition in the olfactory region, which could be employed for NTBDD applications. Full article
Show Figures

Graphical abstract

21 pages, 6319 KB  
Article
Sensitivity Analysis and Uncertainty Quantification of Nanoparticle Deposition from Tongue Morphological Variations
by Tiancheng Yang, Xiuhua Si and Jinxiang Xi
Life 2024, 14(3), 406; https://doi.org/10.3390/life14030406 - 19 Mar 2024
Cited by 2 | Viewed by 2092
Abstract
The human tongue has highly variable morphology. Its role in regulating respiratory flows and deposition of inhaled aerosols remains unclear. The objective of this study was to quantify the uncertainty of nanoparticle deposition from the variability in tongue shapes and positions and to [...] Read more.
The human tongue has highly variable morphology. Its role in regulating respiratory flows and deposition of inhaled aerosols remains unclear. The objective of this study was to quantify the uncertainty of nanoparticle deposition from the variability in tongue shapes and positions and to rank the importance of these morphological factors. Oropharyngeal models with different tongue postures were reconstructed by modifying an existent anatomically accurate upper airway geometry. An LRN k-ω model was applied to solve the multiregime flows, and the Lagrangian tracking approach with near-wall treatment was used to simulate the behavior and fate of inhaled aerosols. Once the database of deposition rates was completed, a surrogate model was trained using Gaussian process regression with polynomial kernels and was validated by comparing its predictions to new CFD simulations. Input sensitivity analysis and output updateability quantification were then performed using the surrogate model. Results show that particle size is the most significant parameter in determining nanoparticle deposition in the upper airway. Among the morphological factors, the shape variations in the central tongue had a higher impact on the total deposition than those in the back tongue and glottal aperture. When considering subregional deposition, mixed sensitivity levels were observed among morphological factors, with the back tongue being the major factor for throat deposition and the central tongue for oral deposition. Interaction effects between flow rate and morphological factors were much higher than the effects from individual parameters and were most significant in the throat (pharyngolaryngeal region). Given input normal variances, the nanoparticle deposition exhibits logarithmical normal distributions, with much lower uncertainty in 100-nm than 2-nm aerosols. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

21 pages, 2507 KB  
Article
A Parametric 3D Model of Human Airways for Particle Drug Delivery and Deposition
by Leonardo Geronzi, Benigno Marco Fanni, Bart De Jong, Gerben Roest, Sasa Kenjeres, Simona Celi and Marco Evangelos Biancolini
Fluids 2024, 9(1), 27; https://doi.org/10.3390/fluids9010027 - 18 Jan 2024
Cited by 5 | Viewed by 3588
Abstract
The treatment for asthma and chronic obstructive pulmonary disease relies on forced inhalation of drug particles. Their distribution is essential for maximizing the outcomes. Patient-specific computational fluid dynamics (CFD) simulations can be used to optimize these therapies. In this regard, this study focuses [...] Read more.
The treatment for asthma and chronic obstructive pulmonary disease relies on forced inhalation of drug particles. Their distribution is essential for maximizing the outcomes. Patient-specific computational fluid dynamics (CFD) simulations can be used to optimize these therapies. In this regard, this study focuses on creating a parametric model of the human respiratory tract from which synthetic anatomies for particle deposition analysis through CFD simulation could be derived. A baseline geometry up to the fourth generation of bronchioles was extracted from a CT dataset. Radial basis function (RBF) mesh morphing acting on a dedicated tree structure was used to modify this baseline mesh, extracting 1000 synthetic anatomies. A total of 26 geometrical parameters affecting branch lengths, angles, and diameters were controlled. Morphed models underwent CFD simulations to analyze airflow and particle dynamics. Mesh morphing was crucial in generating high-quality computational grids, with 96% of the synthetic database being immediately suitable for accurate CFD simulations. Variations in wall shear stress, particle accretion rate, and turbulent kinetic energy across different anatomies highlighted the impact of the anatomical shape on drug delivery and deposition. The study successfully demonstrates the potential of tree-structure-based RBF mesh morphing in generating parametric airways for drug delivery studies. Full article
(This article belongs to the Special Issue Radial Basis Functions and their Applications in Fluids)
Show Figures

Figure 1

21 pages, 8851 KB  
Article
Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells
by Xiaojia He, Lillie Marie Barnett, Jennifer Jeon, Qian Zhang, Saeed Alqahtani, Marilyn Black, Jonathan Shannahan and Christa Wright
Toxics 2024, 12(1), 67; https://doi.org/10.3390/toxics12010067 - 13 Jan 2024
Cited by 10 | Viewed by 5735
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions [...] Read more.
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air–liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes. Full article
(This article belongs to the Special Issue The Latest Advances in Air Pollution and Human Health)
Show Figures

Figure 1

22 pages, 11453 KB  
Article
Improving Inhalation Performance with Particle Agglomeration via Combining Mechanical Dry Coating and Ultrasonic Vibration
by Qingzhen Zhang, Zheng Wang, Kaiqi Shi, Hang Zhou, Xiaoyang Wei and Philip Hall
Pharmaceutics 2024, 16(1), 68; https://doi.org/10.3390/pharmaceutics16010068 - 31 Dec 2023
Cited by 7 | Viewed by 3100
Abstract
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and [...] Read more.
Agglomerate formulations for dry powder inhalation (DPI) formed with fine particles are versatile means for the highly efficient delivery of budesonide. However, uncontrolled agglomeration induces high deposition in the upper airway, causing local side effects due to high mechanical strength, worse deagglomeration, and poor fine-particle delivery. In the present study, fine lactose was mechanically dry-coated prior to particle agglomeration, and the agglomerates were then spheroidized via ultrasonic vibration to improve their aerosol performance. The results showed that the agglomerate produced with the surface-enriched hydrophobic magnesium stearate and ultrasonic vibration demonstrated improved aerosolization properties, benefiting from their lower mechanical strength, less interactive cohesive force, and improved fine powder dispersion behavior. After dispersion utilizing a Turbuhaler® with a pharmaceutical cascade impactor test, a fine particle fraction (FPF) of 71.1 ± 1.3% and an artificial throat deposition of 19.3 ± 0.4% were achieved, suggesting the potential to improve the therapeutic outcomes of budesonide with less localized infections of the mouth and pharynx. Full article
Show Figures

Graphical abstract

19 pages, 3263 KB  
Review
From Dust to Disease: A Review of Respirable Coal Mine Dust Lung Deposition and Advances in CFD Modeling
by Eurico Madureira, Ahmed Aboelezz, Wei-Chung Su and Pedram Roghanchi
Minerals 2023, 13(10), 1311; https://doi.org/10.3390/min13101311 - 10 Oct 2023
Cited by 7 | Viewed by 3355
Abstract
The United States has witnessed a concerning surge in the incidence of diseases like Coal Workers’ Pneumoconiosis (CWP), despite numerous efforts aimed at prevention. This study delves into the realm of respiratory health by investigating the deposition of dust particles within the respiratory [...] Read more.
The United States has witnessed a concerning surge in the incidence of diseases like Coal Workers’ Pneumoconiosis (CWP), despite numerous efforts aimed at prevention. This study delves into the realm of respiratory health by investigating the deposition of dust particles within the respiratory tract and lungs. By analyzing particles of varying sizes, shapes, velocities, and aerodynamic diameters, we aim to gain a comprehensive understanding of their impact on deposition patterns. This insight could potentially drive changes in dust exposure protocols within mining environments and improve monitoring practices. The interplay of several critical factors, including particle characteristics and an individual’s breathing patterns, plays a pivotal role in determining whether particles settle in the lungs or are exhaled. This paper provides a comprehensive literature review on Respirable Coal Mine Dust (RCMD), with a specific focus on examining particle deposition across different regions of the airway system and lungs. Additionally, we explore the utility of Computational Fluid Dynamics (CFD) in simulating particle behavior within the respiratory system. Predicting the precise behavior of dust particles within the respiratory airway poses a significant challenge. However, through numerical simulations, we aspire to enhance our understanding of strategies to mitigate total lung deposition by comprehensively modeling particle interactions within the respiratory system. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

17 pages, 3467 KB  
Article
Evaluation of a Novel Dry Powder Surfactant Aerosol Delivery System for Use in Premature Infants Supported with Bubble CPAP
by Robert M. DiBlasi, Coral N. Crandall, Rebecca J. Engberg, Kunal Bijlani, Dolena Ledee, Masaki Kajimoto and Frans J. Walther
Pharmaceutics 2023, 15(10), 2368; https://doi.org/10.3390/pharmaceutics15102368 - 22 Sep 2023
Cited by 6 | Viewed by 3377
Abstract
Aerosolized lung surfactant therapy during nasal continuous positive airway pressure (CPAP) support avoids intubation but is highly complex, with reported poor nebulizer efficiency and low pulmonary deposition. The study objective was to evaluate particle size, operational compatibility, and drug delivery efficiency with various [...] Read more.
Aerosolized lung surfactant therapy during nasal continuous positive airway pressure (CPAP) support avoids intubation but is highly complex, with reported poor nebulizer efficiency and low pulmonary deposition. The study objective was to evaluate particle size, operational compatibility, and drug delivery efficiency with various nasal CPAP interfaces and gas humidity levels of a synthetic dry powder (DP) surfactant aerosol delivered by a low-flow aerosol chamber (LFAC) inhaler combined with bubble nasal CPAP (bCPAP). A particle impactor characterized DP surfactant aerosol particle size. Lung pressures and volumes were measured in a preterm infant nasal airway and lung model using LFAC flow injection into the bCPAP system with different nasal prongs. The LFAC was combined with bCPAP and a non-heated passover humidifier. DP surfactant mass deposition within the nasal airway and lung was quantified for different interfaces. Finally, surfactant aerosol therapy was investigated using select interfaces and bCPAP gas humidification by active heating. Surfactant aerosol particle size was 3.68 µm. Lung pressures and volumes were within an acceptable range for lung protection with LFAC actuation and bCPAP. Aerosol delivery of DP surfactant resulted in variable nasal airway (0–20%) and lung (0–40%) deposition. DP lung surfactant aerosols agglomerated in the prongs and nasal airways with significant reductions in lung delivery during active humidification of bCPAP gas. Our findings show high-efficiency delivery of small, synthetic DP surfactant particles without increasing the potential risk for lung injury during concurrent aerosol delivery and bCPAP with passive humidification. Specialized prongs adapted to minimize extrapulmonary aerosol losses and nasal deposition showed the greatest lung deposition. The use of heated, humidified bCPAP gases compromised drug delivery and safety. Safety and efficacy of DP aerosol delivery in preterm infants supported with bCPAP requires more research. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

15 pages, 9002 KB  
Article
CXCL17 Attenuates Diesel Exhaust Emissions Exposure-Induced Lung Damage by Regulating Macrophage Function
by Yize Yin, Chaohui Mu, Jiahui Wang, Yixuan Wang, Wenmin Hu, Wenjing Zhu, Xinjuan Yu, Wanming Hao, Yuxin Zheng, Qinghai Li and Wei Han
Toxics 2023, 11(8), 646; https://doi.org/10.3390/toxics11080646 - 26 Jul 2023
Cited by 9 | Viewed by 2505
Abstract
Exposure to diesel exhaust emissions (DEE) is strongly linked to innate immune injury and lung injury, but the role of macrophage chemoattractant CXCL17 in the lung damage caused by DEE exposure remains unclear. In this study, whole-body plethysmography (WBP), inflammatory cell differential count, [...] Read more.
Exposure to diesel exhaust emissions (DEE) is strongly linked to innate immune injury and lung injury, but the role of macrophage chemoattractant CXCL17 in the lung damage caused by DEE exposure remains unclear. In this study, whole-body plethysmography (WBP), inflammatory cell differential count, and histopathological analysis were performed to assess respiratory parameters, airway inflammation, and airway injury in C57BL/6 male mice exposed to DEE for 3 months. qRT-PCR, IHC (immunohistochemistry), and ELISA were performed to measure the CXCL17 expression in airway epithelium or BALF (bronchoalveolar lavage fluid) following DEE/Diesel exhaust particle (DEP) exposure. Respiratory parameters, airway inflammation, and airway injury were assessed in CXCL17-overexpressing mice through adeno-associated virus vector Type 5 (AAV5) infection. Additionally, an in vitro THP-1 and HBE co-culture system was constructed. Transwell assay was carried out to evaluate the effect of rh-CXCL17 (recombinant human protein-CXCL17) on THP-1 cell migration. Flow cytometry and qRT-PCR were conducted to assess the impacts of rh-CXCL17 on apoptosis and inflammation/remodeling of HBE cells. We found that the mice exposed to DEE showed abnormal respiratory parameters, accompanied by airway injury and remodeling (ciliary injury in airway epithelium, airway smooth muscle hyperplasia, and increased collagen deposition). Carbon content in airway macrophages (CCAM), but not the number of macrophages in BALF, increased significantly. CXCL17 expression significantly decreased in mice airways and HBE after DEE/DEP exposure. AAV5-CXCL17 enhanced macrophage recruitment and clearance of DEE in the lungs of mice, and it improved respiratory parameters, airway injury, and airway remodeling. In the THP-1/HBE co-culture system, rh-CXCL17 increased THP-1 cell migration while attenuating HBE cell apoptosis and inflammation/remodeling. Therefore, CXCL17 might attenuate DEE-induced lung damage by recruiting and activating pulmonary macrophages, which is expected to be a novel therapeutic target for DEE-associated lung diseases. Full article
Show Figures

Figure 1

14 pages, 4197 KB  
Article
Short-Term Exposure to PM10 and Black Carbon in Residential Microenvironments in Bragança, Portugal: A Case Study in Bedrooms, Living Rooms, and Kitchens
by Yago Alonso Cipoli, Carla Alexandra Gamelas, Susana Marta Almeida, Manuel Feliciano and Célia Alves
Atmosphere 2023, 14(7), 1064; https://doi.org/10.3390/atmos14071064 - 23 Jun 2023
Cited by 3 | Viewed by 2677
Abstract
Several studies have evaluated PM concentrations in single specific microenvironments as a measure of exposure in the entire house. In this study, PM10 was monitored at the same time in three microenvironments (bedroom, living room, and kitchen) from three dwellings located in [...] Read more.
Several studies have evaluated PM concentrations in single specific microenvironments as a measure of exposure in the entire house. In this study, PM10 was monitored at the same time in three microenvironments (bedroom, living room, and kitchen) from three dwellings located in a small inland town of the Iberian Peninsula to assess whether exposure varies significantly between them. Real-time optical instruments and low-volume gravimetric samplers were employed. A multi-wavelength absorption instrument was used to determine black carbon (BC) concentrations on the filters. The Multiple-Path Particle Dosimetry Model (MPPD) was applied to evaluate the deposition of PM10 and BC in the airways of adults. For all dwellings, the highest PM10 concentrations were recorded in bedrooms (B1 = 22.7 µg m−3; B2 = 19.5 µg m−3; and B3 = 68.1 µg m−3). Houses 1 and 3 did not show significant differences between microenvironments. This did not happen in house 2, suggesting that ventilation is a determining factor for concentrations. BC originated mainly from fossil fuel emissions (90%), while biomass burning represented a minor contribution (10%). MPPD showed that PM10 is predominantly deposited in the head region (≥85% of the total dose), while BC is mainly deposited in the pulmonary region (14%). Higher doses were estimated for males than for females. Full article
(This article belongs to the Special Issue Air Quality in Spain and the Iberian Peninsula)
Show Figures

Figure 1

Back to TopTop