New Homogeneous Spatial Areas Identified Using Case-Crossover Spatial Lag Grid Differences between Aerosol Optical Depth-PM2.5 and Respiratory-Cardiovascular Emergency Department Visits and Hospitalizations
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Questions
1.3. Research Objectives
2. Materials and Methods
2.1. Baltimore Study Area
2.1.1. ED and IP Hospitalization Cases
2.1.2. Controls
2.1.3. Case and Control Strata
2.2. Confounders and Effect Modifiers
2.3. AOD-PM2.5 and Baseline PMB Fused Surfaces
2.4. Baseline PMB and AOD-PM2.5 Correlations
2.5. File Linkage
2.6. Spatial Lag Grid and Temporal Lag Day Analyses
2.7. Statistical Analyses
2.7.1. Variable Selection
2.7.2. Final CLR Runs
2.8. House Heating Fuel
2.9. Spatial Autocorrelations
3. Results
3.1. Correlations between Baseline PMB and Experimental AOD-PM2.5 Fused Surfaces
3.1.1. Fused Surface Means by Air Monitor Grid Condition
3.1.2. Fused Surface and Demographic Variable Categorical Analyses
3.1.3. Patient Characteristics
3.2. CLR Analyses
3.2.1. Emergency Department (ED) Asthma
3.2.2. Inpatient (IP) Asthma
3.2.3. Inpatient Myocardial Infarction (IP MI)
3.2.4. Inpatient Heart Failure (IP HF)
3.3. No Monitor–Monitor OR Percent
3.4. Size of Homogeneous Spatial Area
Monitor–No Monitor Differences
3.5. Warm–Cold Season Differences
3.5.1. Warm-Cold Season OR Percent
3.5.2. House Heating Fuel
3.5.3. Spatial Autocorrelations in the Baltimore Study Area
3.6. Lag Grids versus Lag Days
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Abbreviations
∆% | Percent difference |
∆OR% | No monitor–monitor OR percent |
r2% | Square of correlation coefficient percent |
AOD | Aerosol optical depth |
CI | 95% confidence interval |
CLR | Conditional logistic regression |
CMAQ | Community Multiscale Air Quality |
ED | Emergency department |
HBM | Hierarchical Bayesian Model |
HF | Heart failure |
HOSA | Homogeneous spatial area |
ICD-9-CM | International Classification of Diseases, Ninth Revision, Clinical Modification |
IP | Inpatient hospitalization |
MI | Myocardial infarction |
OR | Odds ratio |
PHREG | Proportional hazards regression |
PM0.1 | Ultrafine particulate matter |
PM2.5 | Fine particulate matter |
PMB | PM2.5 baseline model (monitor PM2.5 and CMAQ PM2.5) |
PMC | AOD PM2.5 model (monitor PM2.5 and AOD PM2.5) |
PMCK | AOD PM2.5 Kriged model (monitor PM2.5 and AOD PM2.5 Kriged) |
PMCKQ | AOD PM2.5 Kriged and CMAQ PM2.5 model (monitor PM2.5 and AOD PM2.5 Kriged and CMAQ PM2.5) |
PMCQ | AOD PM2.5 and CMAQ PM2.5 model (monitor PM2.5 and AOD PM2.5 and CMAQ PM2.5) |
SAS | Statistical analysis system |
ZCTA | ZIP code tabulation area |
ZIP Code | Zone improvement plan |
References
- Amsalu, E.; Wang, T.; Li, H.; Liu, Y.; Wang, A.; Liu, X.; Tao, L.; Luo, Y.; Zhang, F.; Yang, X.; et al. Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular disease in Beijing, China: A time-series study. Environ. Health 2019, 18, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argacha, J.F.; Collart, P.; Wauters, A.; Kayaert, P.; Lochy, S.; Schoors, D.; Sonck, J.; de Vos, T.; Forton, M.; Brasseur, O.; et al. Air pollution and ST-elevation myocardial infarction: A case-crossover study of the Belgian STEMI registry 2009–2013. Int. J. Cardiol. 2016, 223, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Braggio, J.T.; Hall, E.S.; Weber, S.A.; Huff, A.K. Contribution of Satellite-Derived Aerosol Optical Depth PM2.5 Bayesian Concentration Surfaces to Respiratory-Cardiovascular Chronic Disease Hospitalizations in Baltimore, Maryland. Atmosphere 2020, 11, 209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Glonek, G.; Hansen, A.; Williams, S.; Tuke, J.; Salter, A.; Bi, P. The effects of air pollution on asthma hospital admissions in Adelaide, South Australia, 2003–2013: Time-series and case-crossover analyses. Clin. Exp. Allergy 2016, 46, 1416–1430. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Chen, C.C.; Chiu, H.F.; Yang, C.Y. Fine particulate air pollution and hospital admissions for asthma: A case-crossover study in Taipei. J. Toxicol. Environ. Health A 2014, 77, 1075–1083. [Google Scholar] [CrossRef]
- Cordova, J.E.D.; Aguirre, V.T.; Apestegui, V.V.; Ibarguen, L.O.; Vu, B.N.; Steenland, K.; Gonzales, G.F. Association of PM(2.5) concentration with health center outpatient visits for respiratory diseases of children under 5 years old in Lima, Peru. Environ. Health 2020, 19, 7. [Google Scholar] [CrossRef]
- Khalili, R.; Bartell, S.M.; Hu, X.; Liu, Y.; Chang, H.H.; Belanoff, C.; Strickland, M.J.; Vieira, V.M. Early-life exposure to PM2.5 and risk of acute asthma clinical encounters among children in Massachusetts: A case-crossover analysis. Environ. Health 2018, 17, 20. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, Y.; Tian, Y.H.; Cao, Y.Y.; Song, J.; Huang, Z.; Wang, X.W.; Hu, Y.H. Association Between PM2.5 and Daily Hospital Admissions for Heart Failure: A Time-Series Analysis in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 2217. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Kwon, H.J.; Lim, J.A.; Choi, J.H.; Ha, M.; Hwang, S.S.; Choi, W.J. Short-term Effect of Fine Particulate Matter on Children’s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis. J. Prev. Med. Public Health 2016, 49, 205–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.-J.; Liu, C.-Y.; Mong, N.T.; Chou, C.C.K. Spatial Correlation of Satellite-Derived PM2.5 with Hospital Admissions for Respiratory Diseases. Remote Sens. 2016, 8, 914. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Tian, Y.; Song, J.; Cao, Y.; Xiang, X.; Huang, C.; Li, M.; Hu, Y. Effect of Ambient Air Pollution on Hospitalization for Heart Failure in 26 of China’s Largest Cities. Am. J. Cardiol. 2018, 121, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Zhang, Y.; Jiang, J.; Luan, H.; Yu, C.; Nan, P.; Luo, B.; You, M. Short-Term Effects of Ambient Air Pollution on Hospitalization for Respiratory Disease in Taiyuan, China: A Time-Series Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruss-Ustun, A.; van Deventer, E.; Mudu, P.; Campbell-Lendrum, D.; Vickers, C.; Ivanov, I.; Forastiere, F.; Gumy, S.; Dora, C.; Adair-Rohani, H.; et al. Environmental risks and non-communicable diseases. BMJ 2019, 364, l265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strosnider, H.M.; Chang, H.H.; Darrow, L.A.; Liu, Y.; Vaidyanathan, A.; Strickland, M.J. Age-Specific Associations of Ozone and Fine Particulate Matter with Respiratory Emergency Department Visits in the United States. Am. J. Respir. Crit. Care Med. 2019, 199, 882–890. [Google Scholar] [CrossRef]
- Tapia, V.; Steenland, K.; Sarnat, S.E.; Vu, B.; Liu, Y.; Sanchez-Ccoyllo, O.; Vasquez, V.; Gonzales, G.F. Time-series analysis of ambient PM2.5 and cardiorespiratory emergency room visits in Lima, Peru during 2010–2016. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 680–688. [Google Scholar] [CrossRef]
- Wang, C.; Feng, L.; Chen, K. The impact of ambient particulate matter on hospital outpatient visits for respiratory and circulatory system disease in an urban Chinese population. Sci. Total Environ. 2019, 666, 672–679. [Google Scholar] [CrossRef]
- Weber, S.A.; Insaf, T.Z.; Hall, E.S.; Talbot, T.O.; Huff, A.K. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates. Environ. Res. 2016, 151, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Bourdrel, T.; Bind, M.A.; Béjot, Y.; Morel, O.; Argacha, J.F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef]
- Cahill, T.A.; Barnes, D.E.; Spada, N.J.; Lawton, J.A.; Cahill, T.M. Very Fine and Ultrafine Metals and Ischemic Heart Disease in the California Central Valley 1: 2003–2007. Aerosol Sci. Technol. 2011, 45, 1123–1134. [Google Scholar] [CrossRef]
- Devlin, R.B.; Smith, C.B.; Schmitt, M.T.; Rappold, A.G.; Hinderliter, A.; Graff, D.; Carraway, M.S. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol. Sci. 2014, 140, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Franck, U.; Odeh, S.; Wiedensohler, A.; Wehner, B.; Herbarth, O. The effect of particle size on cardiovascular disorders--the smaller the worse. Sci. Total Environ. 2011, 409, 4217–4221. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.M.; Hoffmann, A.R.; Behlen, J.C.; Lau, C.; Pendleton, D.; Harvey, N.; Shore, R.; Li, Y.; Chen, J.; Tian, Y.; et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ. Health Prev. Med. 2021, 26, 72. [Google Scholar] [CrossRef] [PubMed]
- Andersen, Z.J.; Olsen, T.S.; Andersen, K.K.; Loft, S.; Ketzel, M.; Raaschou-Nielsen, O. Association between short-term exposure to ultrafine particles and hospital admissions for stroke in Copenhagen, Denmark. Eur. Heart J. 2010, 31, 2034–2040. [Google Scholar] [CrossRef] [Green Version]
- Lavigne, E.; Donelle, J.; Hatzopoulou, M.; Van Ryswyk, K.; van Donkelaar, A.; Martin, R.V.; Chen, H.; Stieb, D.M.; Gasparrini, A.; Crighton, E.; et al. Spatiotemporal Variations in Ambient Ultrafine Particles and the Incidence of Childhood Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Leikauf, G.D.; Kim, S.H.; Jang, A.S. Mechanisms of ultrafine particle-induced respiratory health effects. Exp. Mol. Med. 2020, 52, 329–337. [Google Scholar] [CrossRef]
- Ohlwein, S.; Kappeler, R.; Joss, M.K.; Künzli, N.; Hoffmann, B. Health effects of ultrafine particles: A systematic literature review update of epidemiological evidence. Int. J. Public Health 2019, 64, 547–559. [Google Scholar] [CrossRef]
- Franchini, M.; Guida, A.; Tufano, A.; Coppola, A. Air pollution, vascular disease and thrombosis: Linking clinical data and pathogenic mechanisms. J. Thromb. Haemost. 2012, 10, 2438–2451. [Google Scholar] [CrossRef]
- Traboulsi, H.; Guerrina, N.; Iu, M.; Maysinger, D.; Ariya, P.; Baglole, C.J. Inhaled Pollutants: The Molecular Scene behind Respiratory and Systemic Diseases Associated with Ultrafine Particulate Matter. Int. J. Mol. Sci. 2017, 18, 243. [Google Scholar] [CrossRef]
- Shkirkova, K.; Lamorie-Foote, K.; Connor, M.; Patel, A.; Barisano, G.; Baertsch, H.; Liu, Q.; Morgan, T.E.; Sioutas, C.; Mack, W.J. Effects of ambient particulate matter on vascular tissue: A review. J. Toxicol. Environ. Health Part B Crit. Rev. 2020, 23, 319–350. [Google Scholar] [CrossRef]
- Ostro, B.; Hu, J.; Goldberg, D.; Reynolds, P.; Hertz, A.; Bernstein, L.; Kleeman, M.J. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: Results from the California Teachers Study Cohort. Environ. Health Perspect. 2015, 123, 549–556. [Google Scholar] [CrossRef]
- Wright, R.J.; Coull, B.A. Small but Mighty: Prenatal Ultrafine Particle Exposure Linked to Childhood Asthma Incidence. Am. J. Respir. Crit. Care Med. 2019, 199, 1448–1450. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Oh, J.; Kang, I.S.; Ha, E.; Pyun, W.B. Effect of Short-Term Exposure to Fine Particulate Matter and Temperature on Acute Myocardial Infarction in Korea. Int. J. Environ. Res. Public Health 2021, 18, 4822. [Google Scholar] [CrossRef] [PubMed]
- Clements, A.; Herrera, R.; Hurn, S. Network analysis: A novel approach to identify PM2.5 hotspots and their spatio-temporal impact on air quality in Santiago de Chile. Air Qual. Atmos. Health 2020, 13, 1075–1082. [Google Scholar] [CrossRef]
- EPA (U.S. Environmental Protection Agency). Air Quality System (AQS). Available online: https://www.epa.gov/aqs (accessed on 14 November 2021).
- Rodopoulou, S.; Samoli, E.; Chalbot, M.G.; Kavouras, I.G. Air pollution and cardiovascular and respiratory emergency visits in Central Arkansas: A time-series analysis. Sci. Total Environ. 2015, 536, 872–879. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.; Koutrakis, P.; Coull, B.; Kloog, I.; Schwartz, J. Acute effect of fine particulate matter on mortality in three Southeastern states from 2007–2011. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Ebisu, K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ. Health Perspect. 2012, 120, 1699–1704. [Google Scholar] [CrossRef]
- Brochu, P.J.; Yanosky, J.D.; Paciorek, C.J.; Schwartz, J.; Chen, J.T.; Herrick, R.F.; Suh, H.H. Particulate air pollution and socioeconomic position in rural and urban areas of the Northeastern United States. Am. J. Public Health 2011, 101 (Suppl. 1), S224–S230. [Google Scholar] [CrossRef]
- Brook, R.D.; Bard, R.L.; Morishita, M.; Dvonch, J.T.; Wang, L.; Yang, H.Y.; Spino, C.; Mukherjee, B.; Kaplan, M.J.; Yalavarthi, S.; et al. Hemodynamic, autonomic, and vascular effects of exposure to coarse particulate matter air pollution from a rural location. Environ. Health Perspect. 2014, 122, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Song, Z.; Zhang, X.; Wu, Y.; Duan, M.; Pu, W.; Ma, Z.; Quan, W.; Zhou, H.; Che, H.; et al. Similarities and Differences in the Temporal Variability of PM2.5 and AOD Between Urban and Rural Stations in Beijing. Remote Sens. 2020, 12, 1193. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Li, Z.; Guo, J.; Su, T.; Chen, T.; Wei, J.; Cribb, M. The Urban–Rural Heterogeneity of Air Pollution in 35 Metropolitan Regions across China. Remote Sens. 2020, 12, 2320. [Google Scholar] [CrossRef]
- Lee, M.; Kloog, I.; Chudnovsky, A.; Lyapustin, A.; Wang, Y.; Melly, S.; Coull, B.; Koutrakis, P.; Schwartz, J. Spatiotemporal prediction of fine particulate matter using high-resolution satellite images in the Southeastern US 2003–2011. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorek-Hamer, M.; Just, A.C.; Kloog, I. Satellite remote sensing in epidemiological studies. Curr. Opin. Pediatr. 2016, 28, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana, J.; Santos, J.V.; Neiva, R.M.; Souza, J.; Duarte, L.; Teodoro, A.C.; Freitas, A. Remote Sensing in Human Health: A 10-Year Bibliometric Analysis. Remote Sens. 2017, 9, 1225. [Google Scholar] [CrossRef] [Green Version]
- Vu, B.N.; Sanchez, O.; Bi, J.; Xiao, Q.; Hansel, N.N.; Checkley, W.; Gonzales, G.F.; Steenland, K.; Liu, Y. Developing an Advanced PM2.5 Exposure Model in Lima, Peru. Remote Sens. 2019, 11, 641. [Google Scholar] [CrossRef] [Green Version]
- Luong, N.D.; Hieu, B.T.; Hiep, N.H. Contrasting seasonal pattern between ground-based PM2.5 and MODIS satellite-based aerosol optical depth (AOD) at an urban site in Hanoi, Vietnam. Environ. Sci. Pollut. Res. Int. 2021. Online ahead of print. [Google Scholar] [CrossRef]
- Hu, X.; Waller, L.A.; Lyapustin, A.; Wang, Y.; Liu, Y. 10-year spatial and temporal trends of PM2.5 concentrations in the southeastern US estimated using high-resolution satellite data. Atmos. Chem. Phys. 2014, 14, 6301–6314. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Coull, B.A.; Bell, M.L.; Koutrakis, P. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations. Environ. Res. 2012, 118, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Kloog, I.; Chudnovsky, A.A.; Just, A.C.; Nordio, F.; Koutrakis, P.; Coull, B.A.; Lyapustin, A.; Wang, Y.; Schwartz, J. A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data. Atmos. Environ. 2014, 95, 581–590. [Google Scholar] [CrossRef] [Green Version]
- McGuinn, L.A.; Ward-Caviness, C.K.; Neas, L.M.; Schneider, A.; Diaz-Sanchez, D.; Cascio, W.E.; Kraus, W.E.; Hauser, E.; Dowdy, E.; Haynes, C.; et al. Association between satellite-based estimates of long-term PM2.5 exposure and coronary artery disease. Environ. Res. 2016, 145, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.; Yao, L. Spatio-Temporal Differences in Health Effect of Ambient PM2.5 Pollution on Acute Respiratory Infection Between Children and Adults. IEEE Access 2019, 7, 25718–25726. [Google Scholar] [CrossRef]
- Batterman, S.; Xu, L.; Chen, F.; Chen, F.; Zhong, X. Characteristics of PM2.5 Concentrations across Beijing during 2013–2015. Atmos. Environ. 2016, 145, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabass, A.; Talbott, E.O.; Bilonick, R.A.; Rager, J.R.; Venkat, A.; Marsh, G.M.; Duan, C.; Xue, T. Using spatio-temporal modeling for exposure assessment in an investigation of fine particulate air pollution and cardiovascular mortality. Environ. Res. 2016, 151, 564–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanosky, J.D.; Paciorek, C.J.; Laden, F.; Hart, J.E.; Puett, R.C.; Liao, D.; Suh, H.H. Spatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors. Environ. Health 2014, 13, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Li, L.; Chen, L.; Hu, S.; Yuan, L.; Liu, Y.; Cui, Y.; Zhang, T. Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period. Int. J. Environ. Res. Public Health 2019, 16, 3522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Q.; Zhang, M.; Huang, B. Spatio-temporal variation and impact factors analysis of satellite-based aerosol optical depth over China from 2002 to 2015. Atmos. Environ. 2016, 129, 79–90. [Google Scholar] [CrossRef]
- He, Q.; Gu, Y.; Zhang, M. Spatiotemporal patterns of aerosol optical depth throughout China from 2003 to 2016. Sci. Total Environ. 2019, 653, 23–35. [Google Scholar] [CrossRef]
- Hu, Z. Spatial analysis of MODIS aerosol optical depth, PM2.5, and chronic coronary heart disease. Int. J. Health Geogr. 2009, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Paciorek, C.J.; Koutrakis, P. Estimating regional spatial and temporal variability of PM(2.5) concentrations using satellite data, meteorology, and land use information. Environ. Health Perspect. 2009, 117, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Cai, K.; Zhang, Q.; Li, S.; Li, Y.; Ge, W. Spatial(-)Temporal Variations in NO(2) and PM2.5 over the Chengdu(-)Chongqing Economic Zone in China during 2005(-)2015 Based on Satellite Remote Sensing. Sensors 2018, 18, 3950. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liu, K.; Zhou, L. Spatio-temporal trends and influencing factors of PM2.5 concentrations in urban agglomerations in China between 2000 and 2016. Environ. Sci. Pollut. Res. Int. 2021, 28, 10988–11000. [Google Scholar] [CrossRef]
- HSCRC (Maryland Health Services Cost Review Commission). ED and IP data, 2004–2006. Available online: https://hscrc.state.md.us/pages/default.aspx (accessed on 14 November 2021).
- USPS (United States Postal Service, Office of Inspector General). The Untold Story of the ZIP Code, RARC-WP-13-006. Available online: https://permanent.fdlp.gov/gpo47009/rarc-wp-13-006.pdf (accessed on 14 November 2021).
- CDC (U.S. Centers for Disease Control and Prevention, National Center for Health Statistics). International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM), 2011. Available online: https://www.cdc.gov/nchs/icd/icd9cm.htm (accessed on 14 November 2021).
- MDH (Maryland Department of Health). Institutional Review Board. Available online: https://health.maryland.gov/oig/irb/Pages/IRB.aspx (accessed on 14 November 2021).
- Carracedo-Martinez, E.; Taracido, M.; Tobias, A.; Saez, M.; Figueiras, A. Case-crossover analysis of air pollution health effects: A systematic review of methodology and application. Environ. Health Perspect. 2010, 118, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- USCB (U.S. Census Bureau). 2001 Census of People and Housing, Summary File 3. Available online: https://www.census.gov/data/datasets/2000/dec/summary-file-3.html (accessed on 14 November 2021).
- MDP (Maryland Department of Planning). Maryland State Data Center, Zip Code Boundary Area Files, 2004 and 2006 and Maryland 2005–2007 American Community Survey Results. Available online: http://planning.maryland.gov/MSDC/Pages/s5_map_gis.aspx (accessed on 14 November 2021).
- Hall, E.S. Temporal-Spatial Ambient Concentrator Estimator (T-SpACE): Hierarchical Bayesian Model Software Used to Estimate Ambient Concentrations of NAAQS Air Pollutants in Support of Health Studies. United States Environmental Protection Agency, Washington, DC, EPA/600/R-18/01, 2018. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=339714 (accessed on 14 November 2021).
- McMillan, N.J.; Holland, D.M.; Morara, M.; Feng, J. Combining numerical model output and particulate data using Bayesian space-time modeling. Environmetrics 2009, 21, 48–65. [Google Scholar] [CrossRef]
- Weber, S.A.; Engel-Cox, J.A.; Hoff, R.M.; Prados, A.I.; Zhang, H. An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth. J. Air Waste Manag. Assoc. 2010, 60, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Braggio, J.; Weber, S.; Young, E.; Hall, E. Contribution of hierarchical Bayesian and aerosol optical depth PM2.5 sources to respiratory-cardiovascular chronic diseases. In Proceedings of the 26th Annual Conference of the International Society for Environmental Epidemiology (ISEE), Seattle, WA, USA, 24–28 August 2014; Environmental Health Perspectives, Volume 2014, Issue 1. Available online: https://ehp.niehs.nih.gov/action/doSearch?AllField=Braggio (accessed on 14 November 2021).
- EPA (U.S. Environmental Protection Agency). Community Modeling and Analysis System, CMAQ. Available online: https:/www.epa.gocv/cmaq (accessed on 14 November 2021).
- ESRI (Environmental Systems Research Institute). ArcGIS Desktop (ArcMap), Release 10.6.1; ESRI: Redlands, CA, USA, 2018. [Google Scholar]
- Agresti, A. Categorical Data Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2002. [Google Scholar]
- Hosmer, D.J.; Lemeshow, S.; Sturdivant, R. Applied Logistic Regression, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- SAS (Statistical Analysis System). Base SAS 9.4, 7th ed.; SAS Institute, Inc.: Cary, NC, USA, 2017. [Google Scholar]
- SAS (Statistical Analysis System). SAS/STAT 15.1 User’s Guide: High-Performance Procedures; SAS Institute, Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Stokes, M.E.; Davis, C.S.; Koch, G.G. Categorical Data Analysis Using the SAS System, 3rd ed.; SAS Institute, Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Braggio, J.T.; Hall, E.S.; Weber, S.A.; Huff, A.K. Contribution of AOD-PM2.5 surfaces to respiratory-cardiovascular hospital events in urban and rural areas in Baltimore, Maryland, USA: New analytical method correctly identified true positive cases and true negative controls. Atmos. Environ. 2021, 262, 118629. [Google Scholar] [CrossRef]
- Hirshon, J.M.; Shardell, M.; Alles, S.; Powell, J.L.; Squibb, K.; Ondov, J.; Blaisdell, C.J. Elevated ambient air zinc increases pediatric asthma morbidity. Environ. Health Perspect. 2008, 116, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPA (U.S. Environmental Protection Agency). Ambient Monitoring Technology Information Center (AMTIC), Baltimore PM Supersite Project Information. Available online: https://www.epa.gov/amtic/amtic-pm-supersites (accessed on 14 November 2021).
- EPA (U.S. Environmental Protection Agency). Toxics Release Inventory (TRI) Program. TRI Basic Data Files: Calendar Years 1987–2018. Available online: https://www.epa.gov/toxics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018?.%20 (accessed on 14 November 2021).
- Litt, J.S.; Burke, T.A. Uncovering the historic environmental hazards of urban brownfields. J. Urban Health 2002, 79, 464–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litt, J.S.; Tran, N.L.; Burke, T.A. Examining urban brownfields through the public health “macroscope”. Environ. Health Perspect. 2002, 110 (Suppl. 2), 183–193. [Google Scholar] [CrossRef] [PubMed]
- Downey, L. Environmental Inequality in Metropolitan America in 2000. Sociol. Spectr. 2006, 26, 21–41. [Google Scholar] [CrossRef]
- Perlin, S.A.; Sexton, K.; Wong, D.W. An examination of race and poverty for populations living near industrial sources of air pollution. J. Expo. Anal. Environ. Epidemiol. 1999, 9, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Perlin, S.A.; Wong, D.; Sexton, K. Residential proximity to industrial sources of air pollution: Interrelationships among race, poverty, and age. J. Air Waste Manag. Assoc. 2001, 51, 406–421. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.; Zhang, H.; Jiang, C.; Burwell, K.; Rehr, R.; Murray, R.; Dalemarre, L.; Naney, C. Being overburdened and medically underserved: Assessment of this double disparity for populations in the state of Maryland. Environ. Health 2014, 13, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgan, O.; Smargiassi, A.; Perron, S.; Kosatsky, T. Cardiovascular effects of sub-daily levels of ambient fine particles: A systematic review. Environ. Health 2010, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinault, L.; Tjepkema, M.; Crouse, D.L.; Weichenthal, S.; van Donkelaar, A.; Martin, R.V.; Brauer, M.; Chen, H.; Burnett, R.T. Risk estimates of mortality attributed to low concentrations of ambient fine particulate matter in the Canadian community health survey cohort. Environ. Health 2016, 15, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Urch, B.; Poon, R.; Szyszkowicz, M.; Speck, M.; Gold, D.R.; Wheeler, A.J.; Scott, J.A.; Brook, J.R.; Thorne, P.S.; et al. Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: A controlled human exposure study. Environ. Health Perspect. 2015, 123, 534–540. [Google Scholar] [CrossRef] [Green Version]
- von Bismarck-Osten, C.; Birmili, W.; Ketzel, M.; Massling, A.; Petäjä, T.; Weber, S. Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos. Environ. 2013, 77, 415–429. [Google Scholar] [CrossRef]
- Cyrys, J.; Pitz, M.; Heinrich, J.; Wichmann, H.E.; Peters, A. Spatial and temporal variation of particle number concentration in Augsburg, Germany. Sci. Total Environ. 2008, 401, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Lanzinger, S.; Schneider, A.; Breitner, S.; Stafoggia, M.; Erzen, I.; Dostal, M.; Pastorkova, A.; Bastian, S.; Cyrys, J.; Zscheppang, A.; et al. Associations between ultrafine and fine particles and mortality in five central European cities—Results from the UFIREG study. Environ. Int. 2016, 88, 44–52. [Google Scholar] [CrossRef]
- Li, Y.; Henze, D.K.; Jack, D.; Kinney, P.L. The influence of air quality model resolution on health impact assessment for fine particulate matter and its components. Air Qual. Atmos. Health 2016, 9, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Chudnovsky, A.A.; Kostinski, A.; Lyapustin, A.; Koutrakis, P. Spatial scales of pollution from variable resolution satellite imaging. Environ. Pollut. 2013, 172, 131–138. [Google Scholar] [CrossRef]
- Harris, G.; Thompson, W.D.; Fitzgerald, E.; Wartenberg, D. The association of PM(2.5) with full term low birth weight at different spatial scales. Environ. Res. 2014, 134, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yoo, E.H. The importance of spatial resolutions of Community Multiscale Air Quality (CMAQ) models on health impact assessment. Sci. Total Environ. 2018, 627, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
Community Multiscale Air Quality (CMAQ) Grid Columns | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
(11,1) | - | - | - | N (11, 5) | - | - | - | (11, 9) |
- | - | - | - | - | - | - | - | - |
- | - | - | - | - | - | - | - | - |
- | - | - | - | - | (8, 6/B) | - | (8, (8, 8/H)) | - |
- | - | - | - | (7, 5/BC) | (7, 6/BC) | (7, 7/B) | - | - |
W (6,1) | - | - | - | - | (6, 6/BC) | (6, 7/BC) | - | E (6, 9) |
- | - | - | - | - | (5, 6/AA) | (5, 7/AA) | - | - |
- | - | (4, 3/M) | - | (4, 5/PG) | (4, 6/AA) | - | - | - |
- | - | - | - | (3, 5/PG) | - | (3, 7/AA) | - | - |
- | - | - | - | - | (2, 6/PG) | - | - | - |
(1, 1) | - | - | - | S (1, 5) | - | - | - | (1, 9) |
PM2.5 Input Surfaces 1 | Fused Surfaces 2,3 | ||||
---|---|---|---|---|---|
PMB | PMCQ | PMCKQ | PMC | PMCK | |
Monitor | X | X | X | X | X |
CMAQ | X | X | X | ||
AOD-PM2.5 | X | X | |||
AODK-PM2.5 | X | X |
Grid Monitor Examples 1 | Spatial Lag Grid Analyses 2 | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 01 | 24 | 04 | |
No Monitors | ||||||||
Rows (S to N) | R9 | R9 | R9 | R9 | R9 | R9 | R9 | R9 |
Columns (W to E) | C7 | C6 | C5 | C4 | C3 | C6–7 | C3–5 | C3–7 |
Monitors | ||||||||
Rows (S to N) | R6 | R6 | R7 | R7 | R7 | R6 | R7 | R6, 7 |
Columns (W to E) | C7 | C6 | C7 | C6 | C5 | C6–7 | C5–7 | C6–7, 5–7 |
Both—All Grids | ||||||||
Rows (S to N) | R4 | R4 | R4 | R4 | R4 | R4 | R4 | R4 |
Columns (W to E) | C7 | C6 | C5 | C4 | C3 | C7–6 | C5–3 | C7–3 |
Fused Surface | CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2 | |||
---|---|---|---|---|
Both (n = 8316) | Yes (n = 1260) | No (n = 7056) | ∆% | |
PMC | 0.676 (45.7) ‡ | 0.858 (73.6) ‡ | 0.642 (41.2) ‡ | 32.4 |
PMCK | 0.553 (30.6) ‡ | 0.788 (62.1) ‡ | 0.515 (26.4) ‡ | 35.7 |
PMCQ | 0.973 (94.7) ‡ | 0.987 (97.4) ‡ | 0.971 (94.3) ‡ | 3.1 |
PMCKQ | 0.852 (72.6) ‡ | 0.928 (86.1) ‡ | 0.838 (70.2) ‡ | 15.9 |
Fused Surface | CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2 | ||
---|---|---|---|
Both | Yes | No | |
PMB | 14.19 (14.13–14.26) † | 14.60 (14.44–14.76) | 14.12 (14.05–14.19) †,‡ |
PMC | 13.66 (13.60–13.72) † | 13.90 (13.73–14.06) † | 13.62 (13.55–13.68) †,‡ |
PMCK | 14.38 (14.31–14.44) | 14.27 (14.10–14.44) † | 14.39 (14.32–14.47) |
PMCQ | 13.79 (13.74–13.85) † | 14.28 (14.12–14.43) † | 13.71 (13.64–13.77) †,‡ |
PMCKQ | 13.91 (13.85–13.97) † | 14.24 (14.09–14.40) † | 13.85 (13.79–13.92) †,‡ |
Fused Surfaces and Demographic Categories 1 | CMAQ Grid Ambient PM2.5 Air Monitor Status 2−4 | ||
---|---|---|---|
Both | Yes | No | |
PMB—Below | 38 (38.38) ‡ | 4 (26.67) † | 34 (40.48) ‡ |
Within | 6 (6.06) | 1 (6.67) | 5 (5.95) |
Above | 55 (55.56) | 10 (66.67/18.18) | 45 (53.57/81.82) ‡ |
PMC—Below | 52 (52.53) ‡ | 7 (46.67) | 45 (53.57) ‡ |
Within | 17 (17.17) | 1 (6.67) | 16 (19.05) |
Above | 30 (30.30) | 7 (46.67/23.33) | 23 (27.38/76.77) ‡ |
PMCK—Below | 36 (36.36) ‡ | 8 (53.33) | 28 (33.33) ‡ |
Within | 18 (18.18) | 2 (13.33) | 16 (19.05) |
Above | 45 (45.45) | 5 (33.33/11.11) | 40 (47.62/88.89) ‡ |
PMCQ—Below | 39 (39.39) ‡ | 3 (20.0) † | 36 (42.86) ‡ |
Within | 7 (7.07) | 2 (13.13) | 5 (5.95) |
Above | 53 (53.54) | 10 (66.67/18.87) | 43 (51.19/81.13) ‡ |
PMCKQ—Below | 38 (38.38) ‡ | 4 (26.67) | 34 (40.48) ‡ |
Within | 9 (9.09) | 2 (13.33) | 7 (8.33) |
Above | 52 (52.53) | 9 (60.00/17.31) | 43 (51.19/82.69) ‡ |
Poverty—Below | 51 (75.00) ‡ | 7 (50.00) | 44 (81.48) ‡ |
Within | 2 (2.94) | 0 (0.00) | 2 (3.70) |
Above | 15 (22.06) | 7 (50.00/46.67) | 8 (14.81/53.33) |
Population—Below | 36 (52.94) ‡ | 3 (21.43) † | 33 (61.11) ‡ |
Within | 2 (2.94) | 0 (0.00) | 2 (3.70) |
Above | 30 (44.12) | 11 (78.57/36.67) | 19 (35.19/63.33) |
Variables | CMAQ Grid Ambient PM2.5 Air Monitor Status 1,2 | ||
---|---|---|---|
Both | Yes | No | |
ED Asthma | 47,256 (100.00) | 20,815 (44.05) | 26,441 (55.95) |
Cases | 11,723 (24.81) | 5152 (10.90) | 6571 (13.91) |
Controls | 35,533 (75.19) | 15,663 (33.14) | 19,870 (42.05) |
Black ‡ | 22,696 (48.24) | 11,844 (25.17) | 10,852 (23.06) |
Other | 3060 (6.50) | 785 (1.67) | 2275 (4.84) |
White | 21,294 (45.26) | 8082 (17.18) | 13,212 (28.08) |
IP Asthma | 13,515 (100.00) | 5672 (41.97) | 7843 (58.03) |
Cases | 3376 (24.98) | 1417 (10.48) | 1959 (14.50) |
Controls | 10,139 (75.02) | 4255 (31.48) | 5884 (43.54) |
Black ‡ | 4510 (33.43) | 2358 (17.48) | 2152 (15.95) |
Other | 669 (4.96) | 179 (1.33) | 490 (3.63) |
White | 8312 (61.61) | 3119 (23.12) | 5193 (38.49) |
IP MI | 19,021 (100.00) | 7185 (37.42) | 12,016 (62.58) |
Cases | 4790 (24.95) | 1784 (9.29) | 3006 (15.66) |
Controls | 14,411 (75.05) | 5401 (28.13) | 9010 (46.92) |
Black ‡ | 2456 (13.28) | 1183 (6.17) | 1363 (7.11) |
Other | 848 (4.42) | 180 (0.94) | 668 (3.48) |
White | 15,780 (82.30) | 5811 (30.31) | 9969 (51.99) |
IP HF | 27,518 (100.0) | 11,834 (43.00) | 15,684 (57.00) |
Cases | 6826 (24.81) | 2928 (10.64) | 3898 (14.17) |
Controls | 20,692 (75.19) | 8906 (32.36) | 11,786 (42.83) |
Black ‡ | 7029 (25.57) | 3463 (12.60) | 3566 (12.97) |
Other | 793 (2.88) | 285 (1.04) | 508 (1.85) |
White | 19,672 (71.55) | 8078 (29.38) | 11,594 (42.17) |
Grid Monitors 1 | Respiratory-Cardiovascular Chronic Disease Groups | |||
---|---|---|---|---|
ED Asthma | IP Asthma | IP MI | IP HF | |
Both | ||||
PMC | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 3 (0, 1, 01) | 3 (0, 1, 01) |
PMCK | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 3 (0, 1, 01) | 4 (0, 1, 01, 04) |
PMCQ | 0 | 0 | 0 | 0 |
PMCKQ | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 3, (0, 1, 01) | 3 0, 1, 01) |
Yes | ||||
PMC | 0 | 0 | 0 | 0 |
PMCK | 2 (0, 1, 01) | 0 | 0 | 0 |
PMCQ | 0 | 0 | 0 | 0 |
PMCKQ | 0 | 0 | 0 | 0 |
No | ||||
PMC | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 4 (0, 1, 01, 04) | 4 (0, 1, 01, 04) |
PMCK | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 4 (0, 1, 01, 04) | 4 (0, 1, 01, 04) |
PMCQ | 3 (0, 1, 01) | 0 | 0 | 0 |
PMCKQ | 4 (0, 1, 01, 04) | 3 (0, 1, 01) | 3 (0, 1, 01) | 3 (0, 1, 01) |
Monitor–No Monitor 2 | ||||
PMB | = | = | = | = |
PMC | < (0, 1, 01) | < (1, 01) | < (0, 1, 01) | < (0,1, 01) |
PMCK | < (0, 1, 01) | < (0, 01) | < (0, 1, 01) | < (0, 1, 01) |
PMCQ | = | = | = | = |
PMCKQ | = | = | = | = |
Variables | Grids with Ambient Air Monitors 3 | ||
---|---|---|---|
Yes | No | Both | |
Utility/Bottled Gas | 56.4 | 35.2 | 52.9 |
Electricity | 32.8 | 44.1 | 34.7 |
Fuel Oil/Kerosine | 9.8 | 17.9 | 11.1 |
Other 2 | 0.7 | 2.5 | 1.0 |
No Fuel | 0.3 | 0.3 | 0.3 |
Temperature °F 4 | 57.32 (55.50–58.13) | 55.60 (55.26–55.94) | 55.86 (55.55–56.18) |
Surfaces | Seasons 1,2 | |||||
---|---|---|---|---|---|---|
Warm | Cold | Both | ||||
I | Z | I | Z | I | Z | |
PMB | 0.0538 | 35.00 ‡ | 0.1690 | 109.40 ‡ | 0.0995 | 129.10 ‡ |
PMC | 0.0370 | 24.10 ‡ | 0.0027 | 1.91 | 0.9902 | 12.14 ‡ |
PMCK | 0.0268 | 17.49 ‡ | −0.0014 | −0.75 | 0.0045 | 6.01 ‡ |
PMCQ | 0.0456 | 29.70 ‡ | 0.1040 | 67.50 ‡ | 0.0700 | 91.00 ‡ |
PMCKQ | 0.0414 | 26.90 ‡ | 0.0389 | 25.40 ‡ | 0.0353 | 45.90 ‡ |
Temp °F | 0.0167 | 10.96 ‡ | 0.0363 | 23.70 ‡ | 0.0232 | 30.20 ‡ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braggio, J.T.; Hall, E.S.; Weber, S.A.; Huff, A.K. New Homogeneous Spatial Areas Identified Using Case-Crossover Spatial Lag Grid Differences between Aerosol Optical Depth-PM2.5 and Respiratory-Cardiovascular Emergency Department Visits and Hospitalizations. Atmosphere 2022, 13, 719. https://doi.org/10.3390/atmos13050719
Braggio JT, Hall ES, Weber SA, Huff AK. New Homogeneous Spatial Areas Identified Using Case-Crossover Spatial Lag Grid Differences between Aerosol Optical Depth-PM2.5 and Respiratory-Cardiovascular Emergency Department Visits and Hospitalizations. Atmosphere. 2022; 13(5):719. https://doi.org/10.3390/atmos13050719
Chicago/Turabian StyleBraggio, John T., Eric S. Hall, Stephanie A. Weber, and Amy K. Huff. 2022. "New Homogeneous Spatial Areas Identified Using Case-Crossover Spatial Lag Grid Differences between Aerosol Optical Depth-PM2.5 and Respiratory-Cardiovascular Emergency Department Visits and Hospitalizations" Atmosphere 13, no. 5: 719. https://doi.org/10.3390/atmos13050719
APA StyleBraggio, J. T., Hall, E. S., Weber, S. A., & Huff, A. K. (2022). New Homogeneous Spatial Areas Identified Using Case-Crossover Spatial Lag Grid Differences between Aerosol Optical Depth-PM2.5 and Respiratory-Cardiovascular Emergency Department Visits and Hospitalizations. Atmosphere, 13(5), 719. https://doi.org/10.3390/atmos13050719