Deep Learning for Predicting Winter Temperature in North China
Abstract
:1. Introduction
2. Data and Methods
2.1. Prediction System and Data
2.2. Skill Metrics
2.3. Earth System Model
3. Results
3.1. Performance of CNN
3.2. Possible Physical Interpretation
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China Meteorological Administration. China Climate Bulletin; China Meteorological Press: Beijing, China, 2013.
- Miao, Q.; Gong, Y.F.; Deng, R.J.; Wei, N. Impacts of the low-frequency oscillation over the extra-tropics of the Northern Hemisphere on the extreme low temperature event in Northeast China in the winter of 2012/2013. Chin. J. Atmos. Sci. 2016, 40, 817–830. (In Chinese) [Google Scholar]
- Zheng, F.; Yuan, Y.; Ding, Y.; Li, K.; Fang, X.; Zhao, Y.; Sun, Y.; Zhu, J.; Ke, Z.; Wang, J.; et al. The 2020/21 Extremely Cold Winter in China Influenced by the Synergistic Effect of La Niña and Warm Arctic. Adv. Atmos. Sci. 2021, 39, 546–552. [Google Scholar] [CrossRef]
- Wang, J.; Tang, K.; Feng, K.; Lin, X.; Lv, W.; Chen, K.; Wang, F. High Temperature and High Humidity Reduce the Transmission of COVID-19. SSRN Electron. J. 2020, 11, e043863. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.T.; Bett, P.E.; Thornton, H.E.; Scaife, A.A. Skillful Seasonal Predictions for the European Energy Industry. Environ. Res. Lett. 2017, 12, 024002. [Google Scholar] [CrossRef]
- Wang, H.; Fan, K.; Sun, J.; Li, S.; Lin, Z.; Zhou, G.; Chen, L.; Lang, X.; Li, F.; Zhu, Y.; et al. A review of seasonal climate prediction research in China. Adv. Atmos. Sci. 2015, 32, 149–168. [Google Scholar] [CrossRef]
- Rasmusson, E.M.; Carpenter, T.H. Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Niño. Mon. Weather Rev. 1981, 110, 148–162. [Google Scholar] [CrossRef]
- Yan, H.M.; Xiao, Z.N. The Numerical Simulation of the Indian Ocean SSTA Influence on Climatic Variations over Asian Monsoon Region. J. Trop. Meteor. 2000, 16, 18–27. (In Chinese) [Google Scholar]
- Chen, P.Y.; Ni, Y.Q.; Yin, Y.H. Diagnostic Study on the Impact of the Global Sea Surface Temperature Anomalies on the Winter Temperature Anomalies in Eastern China in Past 50 Years. J. Trop. Meteor. 2001, 17, 371–380. (In Chinese) [Google Scholar]
- Zhao, F.M.; Zhu, X.J.; Li, F.; Wang, Z.Q.; Gu, J.Y.; Wang, M.L. Relationship between SSTA in Japan Current Region and Temperature and Precipitation in China Winter. Meteor. Environ. Sci. 2007, 30, 28–31. (In Chinese) [Google Scholar]
- Zhu, Y.M.; Yang, X.Q. Relationships between Pacific Decadal Oscillation (PDO) and Climate Variabilities in China. Acta Meteor. Sin. 2003, 61, 641–654. (In Chinese) [Google Scholar]
- Li, S.L.; Wang, Y.M.; Gao, Y.Q. A review of the Researches on the Atlantic Multidecadal Oscillation (AMO) and Its Climate Influence. Trans. Atmos. Sci. 2009, 32, 458–465. (In Chinese) [Google Scholar]
- Wang, B.; Wu, Z.; Chang, C.-P.; Liu, J.; Li, J.; Zhou, T. Another Look at Interannual-to-Interdecadal Variations of the East Asian Winter Monsoon: The Northern and Southern Temperature Modes. J. Clim. 2010, 23, 1495–1512. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-Y.; Lee, S.-S.; Wang, B.; Ha, K.-J.; Jhun, J.-G. Seasonal prediction and predictability of the Asian winter temperature variability. Clim. Dyn. 2013, 41, 573–587. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Gao, C.H. Interannual Variations of Winter Temperature in East Asia and Their Relationship with Sea Surface Temperature and Sea Ice Concentration. Period. Ocean Univ. China 2012, 42, 7–14. [Google Scholar]
- Chen, X.L.; Wu, H.B.; Ding, G.L.; He, X.X. Ensemble Canonical Correlation Prediction Method of Winter Temperature over China. J. Nanjing Inst. Meteorol. 2007, 30, 623–631. [Google Scholar]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G.; et al. SEAS5: The new ECMWF seasonal forecast system. Geosci. Model Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P.; Sadowski, P.; Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 2014, 5, 4308. [Google Scholar] [CrossRef] [Green Version]
- Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 2015, 33, 831–838. [Google Scholar] [CrossRef]
- Schütt, K.; Arbabzadah, F.; Chmiela, S.; Müller, K.R.; Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 2017, 8, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2017, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Collins, W. Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv 2016, arXiv:1605.01156. [Google Scholar]
- Racah, E.; Beckham, C.; Maharaj, T.; Ebrahimi Kahou, S.; Prabhat, M.; Pal, C. Extreme Weather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Adv. Neural Inf. Process. Syst. 2017, 30, 3405–3416. [Google Scholar]
- Weyn, J.A.; Durran, D.R.; Caruana, R. Can Machines Learn to Predict Weather? Using Deep Learning to Predict Gridded 500-hPa Geopotential Height from Historical Weather Data. J. Adv. Model. 2019, 11, 2680–2693. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Choe, Y.J.; Yom, J.H. Improving accuracy of land surface temperature prediction model based on deep-learning. Spat. Inf. Res. 2020, 28, 377–382. [Google Scholar] [CrossRef]
- Jia, H.; Yang, D.; Deng, W.; Wei, Q.; Jiang, W. Predicting land surface temperature with geographically weighed regression and deep learning. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1396. [Google Scholar] [CrossRef]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Xu, T.; Du, Z.; Gong, H.; Xie, B. How well do the current state-of-the-art CMIP5 models characterise the climatology of the East Asian winter monsoon? Clim. Dyn. 2014, 43, 1241–1255. [Google Scholar] [CrossRef]
- Wu, B.; Zhou, T. Relationships between ENSO and theEast Asian–western North Pacific monsoon: Observations versus 18 CMIP5 models. Clim. Dyn. 2016, 46, 729–743. [Google Scholar] [CrossRef]
- Yang, Y.M.; Wang, B.; Li, J. Improving seasonal prediction of east Asian summer rainfall using NESM3.0: Preliminary results. Atmosphere 2018, 9, 487. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, B.; Yang, Y.M. Diagnostic metrics for evaluating model simulations of the East Asian monsoon. J. Clim. 2020, 33, 1777–1801. [Google Scholar] [CrossRef]
- Meng, X.G.; Guo, J.J.; Han, Y.Q. Preliminary assessment of ERA5 reanalysis data. J. Mar. Meteorol. 2018, 38, 91–99. [Google Scholar]
- Yang, Y.M.; Wang, B. Improving MJO simulation by enhancing the interaction between boundary layer convergence and lower tropospheric heating. Clim. Dyn. 2019, 52, 4671–4693. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Wang, B.; Cao, J.; Ma, L.; Li, J. Improved historical simulation by enhancing moist physical parameterizations in the climate system model NESM3.0. Clim. Dyn. 2020, 54, 3819–3840. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Cho, J.-A.; Moon, J.-Y.; Kim, K.-Y.; Wang, B. Improved boreal summer intraseasonal oscillation simulations over the Indian Ocean by modifying moist parameterizations in climate models. Clim. Dyn. 2021, 57, 2523–2541. [Google Scholar] [CrossRef]
- Yang, Y.M.; An, S.I.; Wang, B.; Park, J.H. A global-scale multidecadal variability driven by Atlantic multidecadal oscillation. Natl. Sci. Rev. 2020, 7, 1190–1197. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.M.; Lee, J.Y.; Wang, B. Dominant process for northward propagation of boreal summer intraseasonal oscillation over the Western North Pacific. Geophys. Res. Lett. 2020, 47, e2020GL089808. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Park, J.-H.; An, S.-I.; Wang, B.; Luo, X. Mean sea surface temperature changes influence ENSO-related precipitation changes in the mid-latitudes. Nat. Commun. 2021, 12, 1495. [Google Scholar] [CrossRef]
- Han, L.; Chen, M.; Chen, K.; Chen, H.; Zhang, Y.; Lu, B.; Qin, R. A deep learning method for bias correction of ECMWF 24–240 h forecasts. Adv. Atmos. Sci. 2021, 38, 1444–1459. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Yang, Y.-M.; Li, Q.; Ham, Y.-G.; Kim, J.-H. Deep Learning for Predicting Winter Temperature in North China. Atmosphere 2022, 13, 702. https://doi.org/10.3390/atmos13050702
Gao L, Yang Y-M, Li Q, Ham Y-G, Kim J-H. Deep Learning for Predicting Winter Temperature in North China. Atmosphere. 2022; 13(5):702. https://doi.org/10.3390/atmos13050702
Chicago/Turabian StyleGao, Liang, Young-Min Yang, Qingqing Li, Yoo-Geun Ham, and Jeong-Hwan Kim. 2022. "Deep Learning for Predicting Winter Temperature in North China" Atmosphere 13, no. 5: 702. https://doi.org/10.3390/atmos13050702
APA StyleGao, L., Yang, Y. -M., Li, Q., Ham, Y. -G., & Kim, J. -H. (2022). Deep Learning for Predicting Winter Temperature in North China. Atmosphere, 13(5), 702. https://doi.org/10.3390/atmos13050702