Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China
Abstract
:1. Introduction
2. Experimental Work
2.1. Sample Collection
2.2. Determination of Chemical Compounds
3. Results and Discussion
3.1. Meteorological Conditions and Major Chemical Components
3.2. Diurnal Variation of SOA Tracers
3.2.1. Isoprene SOA Tracers
3.2.2. Monoterpene SOA Tracers
3.2.3. Toluene SOA Tracer
3.3. Factors Influencing the Formation of SOA
3.4. Estimation Contribution of SOC from Isoprene, Monoterpenes, and Toluene Oxidation Products
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Claeys, M.; Graham, B.; Vas, G.; Wu, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Cuyon, P.; Andreae, M.O.; Artaxo, P. Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene. Science 2004, 303, 1173–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, M.; Czoschke, N.M.; Lee, S.; Kamens, R.M. Heterogeneous Atmosperic Aerosol Production by Acid-Catalyzed Particle-Phase Reactions. Science 2002, 298, 814–817. [Google Scholar] [CrossRef] [PubMed]
- Jaoui, M.; Kleindienst, T.; Lewandowski, M.; Offenberg, J.; Edney, E. Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic or Hydroxyl Groups. 2. Organic Tracer Compounds from Monoterpenes. Environ. Sci. Technol. 2005, 39, 5661–5673. [Google Scholar] [CrossRef] [PubMed]
- Tsigaridis, K.; Kanakidou, M. Global modelling of secondary organic aerosol in the troposphere: A sensitivity analysis. Atmos. Chem. Phys. 2003, 3, 2879–2929. [Google Scholar] [CrossRef] [Green Version]
- Eldering, A.; Hall, J.R.; Hussey, K.J.; Cass, G.R. Visibility Model Based on Satellite-Generated Landscape Data. Environ. Sci. Technol. 1996, 30, 361–370. [Google Scholar] [CrossRef]
- Pilinis, C.; Pandis, S.N.; Seinfeld, J.H. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition. J. Geophys. Res. Atmos. 1995, 1001, 18739–18754. [Google Scholar] [CrossRef]
- Baltensperger, U.; Dommen, J.; Alfarra, M.R.; Duplissy, J.; Gaeggeler, K.; Metzger, A.; Facchini, M.C.; Decesari, S.; Finessi, E.; Reinnig, C.; et al. Combined determination of the chemical composition and of health effects of secondary organic aerosols: The POLYSOA project. J. Aerosol. Med. Pulm. Drug Deliv. 2008, 21, 145–154. [Google Scholar] [CrossRef]
- Piccot, S.D.; Watson, J.J.; Jones, J.W. A global inventory of volatile organic compound emissions from anthropogenic sources. J. Geophys. Res. Atmos. 1992, 97, 9897–9912. [Google Scholar] [CrossRef]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Zimmerman, P. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Kourtchev, I.; Ruuskanen, T.; Maenhaut, W.; Kulmala, M.; Claeys, M. Observation of 2-methyltetrols and related photo-oxidation products of isoprene in boreal forest aerosols from Hyytiälä, Finland. Atmos. Chem. Phys. 2005, 5, 2761–2770. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Wang, X.M.; Gao, B.; Fu, X.X.; He, Q.F.; Zhao, X.Y.; Yu, J.Z.; Zheng, M. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Volkamer, R.; Jimenez, J.L.; Martini, F.S.; Dzepina, K.; Qi, Z.; Salcedo, D.; Molina, L.T.; Worsnop, D.R.; Molina, M.J. Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Paulot, F.; Crounse, J.D.; Kjaergaard, H.G.; Kürten, A.; St Clair, J.M.; Seinfeld, J.H.; Wennberg, P.O. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 2009, 325, 730–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surratt, J.D.; Chan, A.; Eddingsaas, N.C.; Chan, M.N.; Loza, C.L.; Kwan, A.J.; Hersey, S.P.; Flagan, R.C.; Wennberg, P.O.; Seinfeld, J.H. Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc. Natl. Acad. Sci. USA 2010, 107, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Claeys, M.; Szmigielski, R.; Kourtchev, I.; Pieter, V.D.V.; Vermeylen, R.; Maenhaut, W.; Jaoui, M.; Kleindienst, T.E.; Lewandowski, M.; Offenberg, J.H. Hydroxydicarboxylic acids: Markers for secondary organic aerosol from the photooxidation of alpha-pinene. Environ. Sci. Technol. 2007, 41, 1628. [Google Scholar] [CrossRef]
- Eijck, A.V.; Opatz, T.; Taraborrelli, D.; Sander, R.; Hoffmann, T. New tracer compounds for secondary organic aerosol formation from β-caryophyllene oxidation. Atmos. Environ. 2013, 80, 122–130. [Google Scholar] [CrossRef]
- Offenberg, J.H.; Lewis, C.W.; Lewandowski, M.; Jaoui, M.; Kleindienst, T.E.; Edney, E.O. Contributions of toluene and alpha-pinene to SOA formed in an irradiated toluene/alpha-pinene/NO(x)/ air mixture: Comparison of results using 14C content and SOA organic tracer methods. Environ. Sci. Technol. 2007, 41, 3972–3976. [Google Scholar] [CrossRef]
- Wang, G.; Kawamura, K.; Xie, M.; Hu, S.; Gao, S.; Cao, J.; An, Z.; Wang, Z. Size-distributions of n-alkanes, PAHs and hopanes and their sources in the urban, mountain and marine atmospheres over East Asia. Atmos. Chem. Phys. 2009, 9, 8869–8882. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Kawamura, K.; Lee, S.C.; Ho, K.F.; Cao, J.J. Molecular, Seasonal, and Spatial Distributions of Organic Aerosols from Fourteen Chinese Cities. Environ. Sci. Technol. 2006, 40, 4619–4625. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Zhang, Q.; Li, J.; Zeng, L. Molecular characteristics and diurnal variations of organic aerosols at a rural site in the North China Plain with implications for the influence of regional biomass burning. Atmos. Chem. Phys. 2019, 19, 10481–10496. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Kawamura, K.; Chen, J.; Miyazaki, Y. Secondary Production of Organic Aerosols from Biogenic VOCs over Mt. Fuji, Japan. Environ. Sci. Technol. 2014, 48, 8491–8497. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Zhang, Y.Q.; Quan-Fu, H.; Yu, Q.Q.; Wang, J.Q.; Shen, R.Q.; Song, W.; Wang, Y.S.; Wang, X.M. Significant Increase of Aromatics-Derived Secondary Organic Aerosol during Fall to Winter in China. Environ. Sci. Technol. 2017, 13, 7432–7441. [Google Scholar]
- Kleindienst, T.E.; Jaoui, M.; Lewandowski, M.; Offenberg, J.H.; Lewis, C.W.; Bhave, P.V.; Edney, E.O. Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location. Atmos. Environ. 2007, 41, 8288–8300. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Wu, C.; Cao, C.; Zhu, T. Characterization of isoprene-derived secondary organic aerosols at a rural site in North China Plain with implications for anthropogenic pollution effects. Sci. Rep. 2018, 8, 535. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Cao, J.J.; Tie, X.X.; Shen, Z.X.; Liu, S.X.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos. Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Fountoukis, C.; Nenes, A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+–Ca+–Mg+–NH4+–Na+–SO4−–NO3−–Cl−–H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef] [Green Version]
- Hennigan, C.J.; Izumi, J.; Sullivan, A.P.; Weber, R.J.; Nenes, A. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmos. Chem. Phys. 2015, 14, 2775–2790. [Google Scholar] [CrossRef] [Green Version]
- Ho, K.F.; Lee, S.C.; Cao, J.J.; Li, Y.S.; Chow, J.C.; Watson, J.G.; Fung, K. Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmos. Chem. Phys. Discuss. 2006, 6, 4569–4576. [Google Scholar] [CrossRef] [Green Version]
- Bian, Y.X.; Zhao, C.S.; Ma, N.; Chen, J.; Xu, W.Y. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmos. Chem. Phys. 2014, 14, 6417–6426. [Google Scholar] [CrossRef] [Green Version]
- Clegg, S.L.; Brimblecombe, P.; Wexler, A.S. Brimblecombe, P.; Wexler, A.S. A Thermodynamic Model of the System H+-NH4+-Na+-SO42−-NO3−-Cl−-H2O at 298.15 K. J. Phys. Chem. A 1998, 102, 2155–2171. [Google Scholar] [CrossRef]
- Shaanxi Statistical Yearbook; Zhong Guo Tong Ji Chu Ban She: Beijing, China, 2012.
- Babu, P.; Verma, S.; Chatterjee, A.; Sharma, S.K.; Mandal, T.K. Chemical characterization of fine atmospheric particles for water-soluble ions and carbonaceous species over a tropical urban atmosphere in lower Indo-Gangetic Plain. Aerosol Air Qual. Res. 2019, 19, 129–147. [Google Scholar] [CrossRef]
- Claeys, M.; Wang, W.; Ion, A.C.; Kourtchev, I.; Gelencsér, A.; Maenhaut, W. Formation of secondary organic aerosols from isoprene and its gas-phase oxidation products through reaction with hydrogen peroxide. Atmos. Environ. 2004, 38, 4093–4098. [Google Scholar] [CrossRef]
- Wennberg, P.O.; Bates, K.H.; Crounse, J.D.; Dodson, L.G.; Mcvay, R.C.; Mertens, L.A.; Nguyen, T.B.; Praske, E.; Schwantes, R.H.; Smarte, M. Gas-Phase Reactions of Isoprene and Its Major Oxidation Products. Chem. Rev. 2018, 118, 3337–3390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinne, H.; Guenther, A.B.; Greenberg, J.P. Isoprene and monoterpene fluxes measured above Amazonian rainforest and their dependence on light and temperature. Atmos. Environ. 2002, 36, 2421–2426. [Google Scholar] [CrossRef] [Green Version]
- Strader, R.; Lurmann, F.; Pandis, S.N. Evaluation of secondary organic aerosol formation in winter. Atmos. Environ. 1999, 33, 4849–4863. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M.J. Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Szmigielski, R.; Surratt, J.D.; Gómez-González, Y.; Pieter, V.D.V.; Kourtchev, I.; Vermeylen, R.; Blockhuys, F.; Jaoui, M.; Kleindienst, T.E.; Lewandowski, M. 3-Methyl-1,2,3-butanetricarboxylic acid: An atmospheric tracer for terpene secondary organic aerosol. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Kleindienst, T.E.; Conver, T.S.; McIver, C.D.; Edney, E.O. Determination of secondary organic aerosol products from the photooxidation of toluene and their implications in ambient PM2.5. J. Atmos. Chem. 2004, 47, 79–100. [Google Scholar] [CrossRef]
- Hu, D.; Bian, Q.; Li, T.W.Y.; Lau, A.K.H.; Yu, J.Z. Contributions of isoprene, monoterpenes,β-caryophyllene, and toluene to secondary organic aerosols in Hong Kong during the summer of 2006. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Cao, J.; Zhang, R. Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: Temperature and relative humidity effects. Atmos. Chem. Phys. 2013, 13, 11535–11549. [Google Scholar] [CrossRef] [Green Version]
- Bikkina, S.; Kawamura, K.; Sarin, M. Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds. Environ. Ence Technol. 2017, 51, 4347–4357. [Google Scholar] [CrossRef] [PubMed]
- Mcneill, V.F.; Woo, J.L.; Kim, D.D.; Schwier, A.N.; Wannell, N.J.; Sumner, A.J.; Barakat, J.M. Aqueous-Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric Aerosols: A Modeling Study. Environ. Sci. Technol. 2012, 46, 8075. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Bell, D.M.; Hansen, A.; Drozd, G.T.; Zhang, Z.; Gold, A.; Dan, I.; Surratt, J.D.; Glasius, M.; Zelenyuk, A. Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols. Environ. Sci. Technol. 2016, 50, 5580. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Zhuang, G.; Sun, Y.; Wang, Q.; Chen, J.; Ren, L.; Yang, F.; Wang, Z.; Pan, X.; Li, X. Molecular markers of biomass burning, fungal spores and biogenic SOA in the Taklimakan desert aerosols. Atmos. Environ. 2016, 130, 64–73. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2010, 11, 4039–4072. [Google Scholar] [CrossRef] [Green Version]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Gilardoni, S.; Massoli, P.; Paglione, M.; Giulianelli, L.; Carbone, C.; Rinaldi, M.; Decesari, S.; Sandrini, S.; Costabile, F.; Gobbi, G.P. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proc. Natl. Acad. Sci. USA 2016, 113, 10013. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hu, M.; Guo, Q.; Shang, D. Comparison of Secondary Organic Aerosol Estimation Methods. Acta Chim. Sin. 2014, 72, 658. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, M.; Zhang, P.; Gong, S.; Zhong, M.; Wu, M.; Zheng, M.; Chen, C.; Wang, H.; Lou, S. Investigation of the sources and seasonal variations of secondary organic aerosols in PM2.5 in Shanghai with organic tracers. Atmos. Environ. 2013, 79, 614–622. [Google Scholar] [CrossRef]
Daytime (n = 21) | Nighttime (n = 21) | Total (n = 42) | |
---|---|---|---|
Inorganic ions (μg/m3) | |||
SO42− | 19.63 ± 7.14 | 18.45 ± 6.41 | 19.04 ± 6.81 |
NO3− | 1.77 ± 0.75 | 5.02 ± 2.89 | 3.40 ± 2.67 |
NH4+ | 4.65 ± 1.70 | 5.36 ± 2.03 | 5.01 ± 1.90 |
Na+ | 0.53 ± 0.09 | 0.48 ± 0.07 | 0.50 ± 0.09 |
K+ | 1.05 ± 0.66 | 0.28 ± 0.18 | 0.67 ± 0.62 |
Ca2+ | 0.58 ± 0.28 | 0.58 ± 0.24 | 0.58 ± 0.26 |
Mg2+ | 0.12 ± 0.03 | 0.12 ± 0.03 | 0.12 ± 0.03 |
Cl− | 0.30 ± 0.04 | 0.44 ± 0.13 | 0.37 ± 0.12 |
Meteorological parameters and ozone | |||
T (°C) | 31.91 ± 1.78 | 28.01 ± 1.70 | 29.96 ± 2.61 |
RH (%) | 52.80 ± 3.31 | 65.94 ± 5.21 | 59.37 ± 7.89 |
O3 (ppb) | 80.06 ± 28.92 | 37.78 ± 21.83 | 58.92 ± 33.22 |
Other species (μg/m3) | |||
OC | 7.75 ± 1.61 | 5.74 ± 1.38 | 6.75 ± 1.81 |
EC | 5.35 ± 2.21 | 2.25 ± 0.78 | 3.80 ± 2.27 |
WSOC | 5.82 ± 1.06 | 4.24 ± 0.80 | 5.04 ± 1.23 |
WSOC/OC | 0.76 ± 0.07 | 0.75 ± 0.09 | 0.76 ± 0.08 |
OC/EC | 1.58 ± 0.48 | 2.66 ± 0.45 | 2.12 ± 0.71 |
pHIS | −0.001 ± 0.56 | 0.25 ± 0.45 | 0.13 ± 0.52 |
LWC | 12.19 ± 4.66 | 19.88 ± 7.48 | 16.04 ± 7.32 |
Levoglucosan (ng/m3) | 164.69 ± 92.81 | 54.95 ± 49.16 | 109.82 ± 92.34 |
PM2.5 | 60.63 ± 9.93 | 64.56 ± 17.28 | 62.60 ± 14.23 |
Mass Concentration | Daytime | Night Time | ||||||
---|---|---|---|---|---|---|---|---|
Min. | Max. | Mean | SD | Min. | Max. | Mean | SD | |
(I) Isoprene SOA tracers (ng/m3) | ||||||||
cis-2-methyl-1,3,4-trihydroxy-1-butene | 1.27 | 5.68 | 3.08 | 1.14 | 1.52 | 7.32 | 3.18 | 1.37 |
3-methyl-2,3,4-trihydroxy-1-butene | 1.90 | 10.63 | 5.07 | 2.51 | 2.06 | 12.30 | 4.96 | 2.84 |
trans-2-methyl-1,3,4-trihydroxy-1-butene | 3.99 | 19.55 | 10.09 | 3.96 | 5.27 | 25.45 | 10.58 | 4.88 |
Sum of C5-alkene triols | 7.16 | 35.16 | 18.25 | 7.44 | 8.99 | 44.85 | 18.73 | 8.97 |
trans-3-methyltetrahydrofuran-3,4-diol | 1.21 | 7.64 | 3.38 | 1.52 | 1.60 | 7.35 | 3.51 | 1.55 |
cis-3-methyltetrahydrofuran-3,4-diol | 0.49 | 2.24 | 1.11 | 0.43 | 0.73 | 2.78 | 1.35 | 0.54 |
Sum of 3-methyltetrahydrofuran-3,4-diol | 1.69 | 9.88 | 4.49 | 1.94 | 2.34 | 10.13 | 4.86 | 2.05 |
2-Methylthreitol | 1.07 | 6.87 | 2.28 | 1.29 | 1.73 | 11.04 | 4.33 | 2.87 |
2-Methylerythritol | 3.32 | 23.2 | 8.30 | 4.47 | 4.65 | 30.08 | 12.34 | 6.47 |
Sum of 2-methyltetrols | 4.50 | 30.08 | 10.58 | 5.75 | 6.68 | 41.12 | 16.67 | 8.84 |
2-Methylglyceric acid | 1.84 | 5.49 | 3.49 | 1.05 | 2.10 | 10.13 | 4.86 | 2.05 |
Sum of isoprene SOA tracers | 15.76 | 72.32 | 36.81 | 15.23 | 22.10 | 84.43 | 44.90 | 18.28 |
(II) Monoterpine SOA tracers (ng/m3) | ||||||||
cis-Pinonic acid | 2.10 | 4.53 | 3.18 | 0.64 | 2.03 | 8.66 | 4.17 | 1.43 |
Pinic acid | 2.42 | 4.69 | 3.69 | 0.60 | 2.02 | 6.90 | 3.86 | 1.28 |
3-Methyl-1,2,3-butanetricarboxylic acid | 8.38 | 33.18 | 16.87 | 5.77 | 5.02 | 30.59 | 10.88 | 5.58 |
3-Hydroxyglutaric acid | 2.11 | 4.83 | 3.35 | 0.72 | 1.39 | 5.40 | 2.53 | 0.91 |
Sum of a-pinene SOA tracers | 17.99 | 44.92 | 27.19 | 6.78 | 11.79 | 44.08 | 21.44 | 7.24 |
(III) Toluene SOA Tracer (ng/m3) | ||||||||
2,3-Dihydroxy-4-oxopentanoic acid | 0.23 | 1.60 | 0.84 | 0.29 | 0.17 | 0.81 | 0.37 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Guo, X.; Dai, W.; Liu, S.; Shen, M.; Liu, Y.; Zhang, Y.; Cao, Y.; Qi, W.; Li, L.; et al. Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China. Atmosphere 2022, 13, 634. https://doi.org/10.3390/atmos13040634
Wang X, Guo X, Dai W, Liu S, Shen M, Liu Y, Zhang Y, Cao Y, Qi W, Li L, et al. Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China. Atmosphere. 2022; 13(4):634. https://doi.org/10.3390/atmos13040634
Chicago/Turabian StyleWang, Xiaoqing, Xiao Guo, Wenting Dai, Suixin Liu, Minxia Shen, Yali Liu, Yifan Zhang, Yue Cao, Weining Qi, Lu Li, and et al. 2022. "Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China" Atmosphere 13, no. 4: 634. https://doi.org/10.3390/atmos13040634
APA StyleWang, X., Guo, X., Dai, W., Liu, S., Shen, M., Liu, Y., Zhang, Y., Cao, Y., Qi, W., Li, L., Cao, J., & Li, J. (2022). Diurnal Variations of Isoprene, Monoterpenes, and Toluene Oxidation Products in Aerosols at a Rural Site of Guanzhong Plain, Northwest China. Atmosphere, 13(4), 634. https://doi.org/10.3390/atmos13040634