Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model
Abstract
:1. Introduction
2. The CReSS Model, Hindcast Experiments, and QPF Verification
2.1. The CReSS Model and Hindcast Experiments
2.2. Verification of Model QPFs
3. Time-Lagged Ensemble Hindcasts of TY Morakot (2009)
3.1. Tracks and the Associated QPFs
3.2. Skill Scores of 48-h QPFs
3.3. Time Evolution of Probability
3.4. 24-h QPFs and the Probability
4. Conclusions and Summary
- (i)
- Starting from 0600 UTC 6 August, all but one of the time-lagged members in the ensemble captured the magnitude of the extreme rainfall in southern CMR reasonably well, with a peak 48-h amount near or over 2500 mm. Thus, the TY Morakot event (2009) could have been predicted beforehand, provided that the lead time was short enough to bring about adequately small track errors. In real time, the initial times of these runs would be at least 34 h, and up to 64 h, before the Shiao-Lin tragedy. The above results are consistent with earlier studies.
- (ii)
- However, rain predictions close to the worst-case scenario for Taiwan could not be obtained prior to 6 August by the time-lagged ensemble, as in some other typhoons, mainly due to the larger track errors at longer lead times. This situation limits the practical predictability of the event in real time. When resources allowed, adding more members with a similar capability and/or using different analysis/forecast products, such as IC/BCs, would be potentially helpful to make further improvements to the ensemble information.
- (iii)
- Even with a limited number of members, the time-lagged ensemble can provide useful information regarding the probability of heavy to extreme rainfall. Using more weight for later runs, ≥80–90% chance is obtained for a 48-h rainfall in excess of 1000 mm in southern CMR from runs starting at 6 August, and ≥80% predicted over 1500 mm in parts of the area. In real time situations, the evolution of probabilities can be effective to reflect the changing conditions in the forecasts as a TC approaches, thus providing invaluable information concerning decision making and hazard mitigation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Golding, B. Quantitative precipitation forecasting in the UK. J. Hydrol. 2000, 239, 286–305. [Google Scholar] [CrossRef]
- Mullen, S.L.; Buizza, R. Quantitative Precipitation Forecasts over the United States by the ECMWF Ensemble Prediction System. Mon. Weather Rev. 2001, 129, 638–663. [Google Scholar] [CrossRef]
- Fritsch, J.M.; Carbone, R.E. Improving Quantitative Precipitation Forecasts in the Warm Season: A USWRP Research and Development Strategy. Bull. Am. Meteorol. Soc. 2004, 85, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Cuo, L.; Pagano, T.C.; Wang, Q. A Review of Quantitative Precipitation Forecasts and Their Use in Short- to Medium-Range Streamflow Forecasting. J. Hydrometeorol. 2011, 12, 713–728. [Google Scholar] [CrossRef]
- Wang, S.-T. Track, intensity, structure, wind and precipitation characteristics of typhoons affecting Taiwan. Natl. Sci. Counc. Taiwan Disaster Mitig. Res. Rep. 1989, 285, 73–80. (In Chinese) [Google Scholar]
- Chang, C.-P.; Yeh, T.-C.; Chen, J.M. Effects of Terrain on the Surface Structure of Typhoons over Taiwan. Mon. Weather Rev. 1993, 121, 734–752. [Google Scholar] [CrossRef]
- Cheung, K.; Huang, L.-R.; Lee, C.-S. Characteristics of rainfall during tropical cyclone periods in Taiwan. Nat. Hazards Earth Syst. Sci. 2008, 8, 1463–1474. [Google Scholar] [CrossRef]
- Su, S.-H.; Kuo, H.-C.; Hsu, L.-H.; Yang, Y.-T. Temporal and Spatial Characteristics of Typhoon Extreme Rainfall in Taiwan. J. Meteorol. Soc. Jpn. Ser. II 2012, 90, 721–736. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-P.; Yang, Y.-T.; Kuo, H.-C. Large Increasing Trend of Tropical Cyclone Rainfall in Taiwan and the Roles of Terrain. J. Clim. 2013, 26, 4138–4147. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Chan, J.C.-L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar]
- Wang, B. The Asian Monsoon; Springer-Praxisr: Berlin/Heidelberg, Germany, 2006; 787p. [Google Scholar]
- Chien, F.-C.; Liu, Y.-C.; Lee, C.-S. Heavy rainfall and southerly flow after the leaving of Typhoon Mindulle (2004) from Taiwan. J. Meteorol. Soc. Jpn. 2008, 86, 17–44. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Hsu, H.-H.; Matsumoto, J. Summer Monsoons in East Asia, Indochina and the Western North Pacific. In The Global Monsoon System: Research and Forecast, 2nd ed.; Chang, C.P., Ding, Y., Lau, N.-C., Johnson, R.H., Wang, B., Yasunari, T., Eds.; World Scientific: Singapore, 2011; pp. 43–72. [Google Scholar] [CrossRef]
- Mark, F.D.; Shay, L.K. Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Am. Meteorol. Soc. 1998, 79, 305–323. [Google Scholar]
- DeMaria, M.; Knaff, J.; Sampson, C. Evaluation of long-term trends in tropical cyclone intensity forecasts. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2007, 97, 19–28. [Google Scholar] [CrossRef]
- Rogers, R.; Coauthors. NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Am. Meteorol. Soc. 2013, 94, 859–882. [Google Scholar] [CrossRef] [Green Version]
- Tallapragada, V.; Kieu, C.; Trahan, S.; Liu, Q.; Wang, W.; Zhang, Z.; Tong, M.; Zhang, B.; Zhu, L.; Strahl, B. Forecasting tropical cyclones in the western North Pacific basin using the NCEP operational HWRF model: Model upgrades and evaluation of re-al-time performance in 2013. Weather Forecast. 2016, 31, 877–894. [Google Scholar] [CrossRef]
- Soria, J.L.A.; Switzer, A.D.; Villanoy, C.L.; Fritz, H.M.; Bilgera, P.H.T.; Cabrera, O.C.; Siringan, F.P.; Maria, Y.Y.-S.; Ramos, R.D.; Fernandez, I.Q. Repeat Storm Surge Disasters of Typhoon Haiyan and Its 1897 Predecessor in the Philippines. Bull. Am. Meteorol. Soc. 2016, 97, 31–48. [Google Scholar] [CrossRef]
- Clark, A.J.; Gallus, W.A., Jr.; Chen, T.-C. Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Weather Rev. 2007, 135, 3456–3473. [Google Scholar] [CrossRef] [Green Version]
- Clark, A.J.; Gallus, W.A., Jr.; Xue, M.; Kong, F. A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Weather Forecast. 2009, 24, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Pohl, B.; Morel, B.; Barthe, C.; Bousquet, O. Regionalizing Rainfall at Very High Resolution over La Réunion Island: A Case Study for Tropical Cyclone Ando. Mon. Weather Rev. 2016, 144, 4081–4099. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E.S. Stochastic dynamic prediction. Tellus 1969, 21, 739–759. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Am. Meteorol. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef] [Green Version]
- Eckel, F.A.; Mass, C.F. Aspects of Effective Mesoscale, Short-Range Ensemble Forecasting. Weather Forecast. 2005, 20, 328–350. [Google Scholar] [CrossRef]
- Leonardo, N.M.; Colle, B.A. Verification of Multimodel Ensemble Forecasts of North Atlantic Tropical Cyclones. Weather Forecast. 2017, 32, 2083–2101. [Google Scholar] [CrossRef]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Mullen, S.L.; Buizza, R. The Impact of Horizontal Resolution and Ensemble Size on Probabilistic Forecasts of Precipitation by the ECMWF Ensemble Prediction System. Weather Forecast. 2002, 17, 173–191. [Google Scholar] [CrossRef]
- Xiang, B.; Lin, S.-J.; Zhao, M.; Zhang, S.; Vecchi, G.; Li, T.; Jiang, X.; Harris, L.; Chen, J.-H. Beyond Weather Time-Scale Prediction for Hurricane Sandy and Super Typhoon Haiyan in a Global Climate Model. Mon. Weather Rev. 2015, 143, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, M.; Ishida, J.; Sato, H.; Nakagawa, M. WGNE Intercomparison of Tropical Cyclone Forecasts by Operational NWP Models: A Quarter Century and Beyond. Bull. Am. Meteorol. Soc. 2017, 98, 2337–2349. [Google Scholar] [CrossRef]
- Braun, S.A. A Cloud-Resolving Simulation of Hurricane Bob (1991): Storm Structure and Eyewall Buoyancy. Mon. Weather Rev. 2002, 130, 1573–1592. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.-C.; Tsujino, S.; Huang, C.-C.; Wang, C.-C.; Tsuboki, K. Diagnosis of the Dynamic Efficiency of Latent Heat Release and the Rapid Intensification of Supertyphoon Haiyan (2013). Mon. Weather Rev. 2019, 147, 1127–1147. [Google Scholar] [CrossRef]
- Wang, C.-C. The More Rain, the Better the Model Performs—The Dependency of Quantitative Precipitation Forecast Skill on Rainfall Amount for Typhoons in Taiwan. Mon. Weather Rev. 2015, 143, 1723–1748. [Google Scholar] [CrossRef]
- Wang, C.-C. Corrigendum. Mon. Weather Rev. 2016, 144, 3031–3033. [Google Scholar] [CrossRef]
- Wang, C.-C. Paper of notes: The more rain from typhoons, the better the models perform. Bull. Am. Meteorol. Soc. 2016, 97, 16–17. [Google Scholar]
- Wang, C.-C.; Chang, C.-S.; Wang, Y.-W.; Huang, C.-C.; Wang, S.-C.; Chen, Y.-S.; Tsuboki, K.; Huang, S.-Y.; Chen, S.-H.; Chuang, P.-Y.; et al. Evaluating Quantitative Precipitation Forecasts Using the 2.5 km CReSS Model for Typhoons in Taiwan: An Update through the 2015 Season. Atmosphere 2021, 12, 1501. [Google Scholar] [CrossRef]
- Tsuboki, K.; Sakakibara, A. Large-Scale Parallel Computing of Cloud Resolving Storm Simulator. In High Performance Computing; Zima, H.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 243–259. [Google Scholar] [CrossRef] [Green Version]
- Tsuboki, K.; Sakakibara, A. Numerical Prediction of High-Impact Weather Systems: The Textbook for the Seventeenth IHP Training Course in 2007; Hydrospheric Atmospheric Research Center, Nagoya University, and UNESCO: Nagoya, Japan, 2007; 273p. [Google Scholar]
- Wang, C.-C.; Chuang, P.-Y.; Chang, C.-S.; Tsuboki, K.; Huang, S.-Y.; Leu, G.-C. Evaluation of Mei-yu heavy-rainfall quantitative precipitation forecasts in Taiwan by a cloud-resolving model for three seasons of 2012–2014. Nat. Hazards Earth Syst. Sci. 2022, 22, 23–40. [Google Scholar] [CrossRef]
- Roebber, P.J.; Schultz, D.M.; Colle, B.A.; Stensrud, D.J. Toward Improved Prediction: High-Resolution and Ensemble Modeling Systems in Operations. Weather Forecast. 2004, 19, 936–949. [Google Scholar] [CrossRef]
- Kong, F.; Droegemeier, K.K.; Hickmon, N.L. Multiresolution Ensemble Forecasts of an Observed Tornadic Thunderstorm System. Part I: Comparsion of Coarse- and Fine-Grid Experiments. Mon. Weather Rev. 2006, 134, 807–833. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Kuo, Y.-H. Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Weather Rev. 2013, 141, 3908–3932. [Google Scholar] [CrossRef] [Green Version]
- Mittermaier, M.P. Improving short-range high-resolution model precipitation forecast skill using time-lagged ensembles. Q. J. R. Meteorol. Soc. 2007, 133, 1487–1500. [Google Scholar] [CrossRef]
- Lu, C.; Yuan, H.; Schwartz, B.E.; Benjamin, S. Short-Range Numerical Weather Prediction Using Time-Lagged Ensembles. Weather Forecast. 2007, 22, 580–595. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Cloud-Resolving Typhoon Rainfall Ensemble Forecasts for Taiwan with Large Domain and Extended Range through Time-Lagged Approach. Weather Forecast. 2016, 31, 151–172. [Google Scholar] [CrossRef]
- Wang, C.-C.; Huang, S.-Y.; Chen, S.-H.; Chang, C.-S.; Tsuboki, K. Paper of notes: Cloud-resolving, time-lagged typhoon rainfall ensemble forecasts. Bull. Am. Meteorol. Soc. 2016, 97, 1128–1129. [Google Scholar]
- Wang, C.; Chen, Y.; Li, M.; Kuo, H.; Tsuboki, K. On the separation of upper and low-level centres of tropical storm Kong-Rey (2013) near Taiwan in association with asymmetric latent heating. Q. J. R. Meteorol. Soc. 2021, 147, 1135–1149. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Kuo, H.-C.; Jou, J.-D.; Chen, T.-C.; Lin, P.-H.; Yeh, T.-C.; Wu, C.-C. Scientific report on Typhoon Morakot (2009); National Science Council: Taipei, Taiwan, 2010; 192p. [Google Scholar]
- Lee, C.-S.; Wu, C.-C.; Wang, T.-C.C.; Elsberry, R.L. Advances in understanding the “Perfect Monsoon-influenced Typhoon”: Summary from International Conference on Typhoon Morakot (2009). Asia-Pac. J. Atmos. Sci. 2011, 47, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Kuo, H.-C.; Chen, Y.-H.; Huang, H.-L.; Chung, C.-H.; Tsuboki, K. Effects of Asymmetric Latent Heating on Typhoon Movement Crossing Taiwan: The Case of Morakot (2009) with Extreme Rainfall. J. Atmos. Sci. 2012, 69, 3172–3196. [Google Scholar] [CrossRef]
- Wang, C.-C.; Kuo, H.-C.; Yeh, T.-C.; Chung, C.-H.; Chen, Y.-H.; Huang, S.-Y.; Wang, Y.-W.; Liu, C.-H. High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol. 2013, 506, 26–41. [Google Scholar] [CrossRef]
- Hong, C.-C.; Lee, M.-Y.; Hsu, H.-H.; Kuo, J.-L. Role of submonthly disturbance and 40–50 day ISO on the extreme rainfall event associated with Typhoon Morakot (2009) in Southern Taiwan. Geophys. Res. Lett. 2010, 37, 08805. [Google Scholar] [CrossRef] [Green Version]
- Chien, F.-C.; Kuo, H.-C. On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res. Earth Surf. 2011, 116, D05104. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Liang, J.; Wu, C.-C. Monsoonal Influence on Typhoon Morakot (2009). Part I: Observational Analysis. J. Atmos. Sci. 2011, 68, 2208–2221. [Google Scholar] [CrossRef]
- Liang, J.; Wu, L.; Ge, X.; Wu, C.-C. Monsoonal Influence on Typhoon Morakot (2009). Part II: Numerical Study. J. Atmos. Sci. 2011, 68, 2222–2235. [Google Scholar] [CrossRef]
- Chen, Y.; Kuo, H.; Wang, C.; Yang, Y. Influence of southwest monsoon flow and typhoon track on Taiwan rainfall during the exit phase: Modelling study of typhoon Morakot (2009). Q. J. R. Meteorol. Soc. 2017, 143, 3014–3024. [Google Scholar] [CrossRef]
- Ge, X.; Li, T.; Zhang, S.; Peng, M. What causes the extremely heavy rainfall in Taiwan during Typhoon Morakot (2009)? Atmos. Sci. Lett. 2010, 11, 46–50. [Google Scholar] [CrossRef]
- Fang, X.; Kuo, Y.-H.; Wang, A. The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Weather Forecast. 2011, 26, 613–633. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.-C.; Wang, T.-C.C.; Tsai, Y.-C.; Tang, Y.-S.; Lin, P.-L.; Lee, Y.-A. Structure of precipitating systems over Taiwan’s complex terrain during Typhoon Morakot (2009) as revealed by weather radar and rain gauge observations. J. Hydrol. 2013, 506, 14–25. [Google Scholar] [CrossRef]
- Yu, C.-K.; Cheng, L.-W. Distribution and Mechanisms of Orographic Precipitation Associated with Typhoon Morakot (2009). J. Atmos. Sci. 2013, 70, 2894–2915. [Google Scholar] [CrossRef]
- Wang, C.-C.; Kuo, H.-C.; Johnson, R.H.; Lee, C.-Y.; Huang, S.-Y.; Chen, Y.-H. A numerical study of convection in rainbands of Typhoon Morakot (2009) with extreme rainfall: Roles of pressure perturbations with low-level wind maxima. Atmos. Chem. Phys. 2015, 15, 11097–11115. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, E.A.; Moskaitis, J.R.; Jin, Y.; Hodur, R.M.; Doyle, J.D.; Peng, M.S. Prediction and Diagnosis of Typhoon Morakot (2009) Using the Naval Research Laboratory’s Mesoscale Tropical Cyclone Model. Terr. Atmos. Ocean. Sci. 2011, 22, 579. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Tseng, L.-S.; Huang, C.; Lo, S.-H.; Chen, C.-T.; Su, N.-C.; Tsuboki, K. How much of Typhoon Morakot’s extreme rainfall is attributable to anthropogenic climate change? Int. J. Clim. 2019, 39, 3454–3464. [Google Scholar] [CrossRef]
- Chou, K.-H.; Wu, C.-C.; Lin, P.-H.; Aberson, S.D.; Weissmann, M.; Harnisch, F.; Nakazawa, T. The Impact of Dropwindsonde Observations on Typhoon Track Forecasts in DOTSTAR and T-PARC. Mon. Weather Rev. 2011, 139, 1728–1743. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weng, Y.; Kuo, Y.-H.; Whitaker, J.S.; Xie, B. Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Weather Forecast. 2010, 25, 1816–1825. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Zhang, F.; Zhang, Q.; Poterjoy, J.; Weng, Y. Observing Strategy and Observation Targeting for Tropical Cyclones Using Ensemble-Based Sensitivity Analysis and Data Assimilation. Mon. Weather Rev. 2013, 141, 1437–1453. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Cotton, W.R.; Tripoli, G.J.; Rauber, R.; Mulvihill, E.A. Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall. J. Clim. Appl. Meteorol. 1986, 25, 1658–1680. [Google Scholar] [CrossRef] [Green Version]
- Murakami, M. Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud. J. Meteorol. Soc. Jpn. Ser. II 1990, 68, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Ikawa, M.; Saito, K. Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. MRI Tech. Rep. 1991, 28, 238. [Google Scholar]
- Murakami, M.; Clark, T.L.; Hall, W.D. Numerical simulations of convective snow clouds over the Sea of Japan: Two-dimensional simulation of mixed layer development and convective snow cloud formation. J. Meteorol. Soc. Jpn. 1994, 72, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Deardorff, J.W. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound. Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Louis, J.F.; Tiedtke, M.; Geleyn, J.F. A short history of the operational PBL parameterization at ECMWF. In Proceedings of the Workshop on Planetary Boundary Layer Parameterization, Reading, UK, ECMWF, 25-27 November 1981; pp. 59–79. [Google Scholar]
- Kondo, J. Heat Balance of the East China Sea during the Air Mass Transformation Experiment. J. Meteorol. Soc. Jpn. Ser. II 1976, 54, 382–398. [Google Scholar] [CrossRef] [Green Version]
- Segami, A.; Kurihara, K.; Nakamura, H.; Ueno, M.; Takano, I.; Tatsumi, Y. Operational MesoScale Weather Prediction with Japan Spectral Model. J. Meteorol. Soc. Jpn. Ser. II 1989, 67, 907–924. [Google Scholar] [CrossRef] [Green Version]
- Hamill, T.M.; Whitaker, J.S.; Fiorino, M.; Benjamin, S. Global Ensemble Predictions of 2009’s Tropical Cyclones Initialized with an Ensemble Kalman Filter. Mon. Weather Rev. 2011, 139, 668–688. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, J.T. The critical success index as an indicator of warning skill. Weather Forecast. 1990, 5, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: San Diego, CA, USA, 1995; 467p. [Google Scholar]
- Wang, C.-C. On the Calculation and Correction of Equitable Threat Score for Model Quantitative Precipitation Forecasts for Small Verification Areas: The Example of Taiwan. Weather Forecast. 2014, 29, 788–798. [Google Scholar] [CrossRef]
- Roberts, N.M.; Lean, H.W. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Mon. Weather Rev. 2008, 136, 78–97. [Google Scholar] [CrossRef]
- Hendricks, E.A.; Jin, Y.; Moskaitis, J.R.; Doyle, J.D.; Peng, M.S.; Wu, C.-C.; Kuo, H.-C. Numerical Simulations of Typhoon Morakot (2009) Using a Multiply Nested Tropical Cyclone Prediction Model. Weather Forecast. 2016, 31, 627–645. [Google Scholar] [CrossRef]
- Hoffman, R.N.; Kalnay, E. Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A Dyn. Meteorol. Oceanogr. 1983, 35, 100–118. [Google Scholar] [CrossRef]
- Dalcher, A.; Kalnay, E.; Hoffman, R. Medium Range Lagged Average Forecasts. Mon. Weather Rev. 1988, 116, 402–416. [Google Scholar] [CrossRef] [Green Version]
- Elsberry, R.L.; Dobos, P.H.; Ben Bacon, A. Lagged-Average Predictions of Tropical Cyclone Tracks. Mon. Weather Rev. 1991, 119, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-C.; Chen, S.-H. High-resolution time-lagged ensemble quantitative precipitation forecasts (QPFs) for typhoons in Taiwan using the Cloud-Resolving Storm Simulator (CReSS). In Proceedings of the 4th WMO Workshop on Monsoon Heavy Rainfall (MHR-4): Science and Prediction of Monsoon Heavy Rainfall, Shenzhen, China, 16–18 April 2019. Session: Tropical Cyclones. [Google Scholar]
- Wang, C.-C.; Lee, C.-Y.; Chen, S.-H. Medium-range cloud-resolving time- lagged typhoon ensemble prediction and the re-forecasts of Haiyan (2013) using CReSS. In Proceedings of the 6th Philippines-Taiwan Earth Sciences International Conference, Clark, Pampanga, the Philippines, 20-22 May 2019. Session III: Meteorology, 40. [Google Scholar]
Map Projection | Lambert Conformal (Center at 120° E, Secant at 10° N and 40° N) |
---|---|
Grid spacing (km) | 2.5 × 2.5 × 0.2 − 0.663 (0.5) * |
Grid dimension (x, y, z) | 744 × 544 × 40 |
Domain size (km) | 1860 × 1360 × 20 |
Forecast frequency | Every 6 h, from 0000 UTC 1 to 0000 UTC 9 August 2009 |
Forecast length | 8 days (192 h) |
IC/BCs | NCEP GFS 1.0° × 1.0° analyses and forecasts (26 levels) |
Cloud microphysics | Bulk cold-rain scheme |
PBL parameterization | 1.5-order closure with turbulent kinetic energy prediction |
Surface processes | Energy/momentum fluxes and shortwave/longwave radiation |
Soil model | 41 levels, every 5 cm to 2-m in depth |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Chen, S.-H.; Tsuboki, K.; Huang, S.-Y.; Chang, C.-S. Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model. Atmosphere 2022, 13, 585. https://doi.org/10.3390/atmos13040585
Wang C-C, Chen S-H, Tsuboki K, Huang S-Y, Chang C-S. Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model. Atmosphere. 2022; 13(4):585. https://doi.org/10.3390/atmos13040585
Chicago/Turabian StyleWang, Chung-Chieh, Shin-Hau Chen, Kazuhisa Tsuboki, Shin-Yi Huang, and Chih-Sheng Chang. 2022. "Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model" Atmosphere 13, no. 4: 585. https://doi.org/10.3390/atmos13040585
APA StyleWang, C. -C., Chen, S. -H., Tsuboki, K., Huang, S. -Y., & Chang, C. -S. (2022). Application of Time-Lagged Ensemble Quantitative Precipitation Forecasts for Typhoon Morakot (2009) in Taiwan by a Cloud-Resolving Model. Atmosphere, 13(4), 585. https://doi.org/10.3390/atmos13040585