Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crouse Dan, L.; Peters Paul, A.; Hystad, P. Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Health Perspect. 2015, 123, 1180–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoek, G.; Krishnan, R.M.; Beelen, R. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Omaye, S.T. Air pollutants, oxidative stress and human health. Mutat. Res.-Genet. Toxicol. Environ. Mutagenesis 2009, 674, 45–54. [Google Scholar] [CrossRef]
- Li, R.; Cui, L.; Hongbo, F. Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island. J. Clean. Prod. 2020, 244, 118773. [Google Scholar] [CrossRef]
- Williams, M.L.; Atkinson, R.W.; Anderson, H.R. Associations between daily mortality in London and combined oxidant capacity, ozone and nitrogen dioxide. Air Qual Atmos. Health 2014, 7, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Simpson, R.; Williams, G.; Petroeschevsky, A. The short-term effects of air pollution on daily mortality in four Australian cities. Aust. N. Z. J. Public Health 2005, 29, 205–212. [Google Scholar] [CrossRef] [Green Version]
- Clapp, L.J.; Jenkin, M.E. Analysis of the relationship between ambient levels of O3, NO2 and NO as a function of NOx in the UK. Atmos. Environ. 2001, 35, 6391–6405. [Google Scholar] [CrossRef]
- Benoît, C.; Sabine, H.; Agnès, L. Quel indicateur d’exposition pour l’étude des effets sanitaires à court terme de la pollution photo-oxydante pour causes respiratoires. Une étude de cas à Paris et proche couronne (2000–2003). Environ. Risques St. 2007, 6, 345–353. [Google Scholar]
- Weichenthal, S.; Lavigne, E.; Evans, G. Ambient PM2.5 and risk of emergency room visits for myocardial infarction: Impact of regional PM2.5 oxidative potential: A case-crossover study. Environ. Health 2016, 15, 46. [Google Scholar] [CrossRef] [Green Version]
- Guo, H. Comparisons of combined oxidant capacity and redox-weighted oxidant capacity in their association with increasing levels of FeNO. Chemosphere 2018, 211, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Malig Brian, J.; Pearson Dharshani, L.; Chang Yun, B. A time-stratified case-crossover study of ambient ozone exposure and emergency department visits for specific respiratory diagnoses in California (2005–2008). Environ. Health Perspect. 2016, 124, 745–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsten, C.; Rider, C.F. Traffic-related air pollution and allergic disease: An update in the context of global urbanization. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Urman, R.; McConnell, R.; Islam, T. Associations of childrens lung function with ambient air pollution: Joint effects of regional and near-roadway pollutants. Thorax 2014, 69, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdolahnejad, A.; Jafari, N.; Mohammadi, A.; Miri, M.; Hajizadeh, Y. Mortality and morbidity due to exposure to ambient NO2, SO2, and O3 in isfahan in 2013–2014. Int. J. Prev. Med. 2018, 9, 11. [Google Scholar] [PubMed]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef]
- Aassve, A.; Cavalli, N.; Mencarini, L. The COVID-19 pandemic and human fertility. Science 2020, 369, 370. [Google Scholar] [CrossRef]
- Qi, D.; Yan, X.; Tang, X.; Peng, J.; Yu, Q.; Feng, L.; Yuan, G.; Zhang, A.; Chen, Y.; Yuan, J. Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: A retrospective, descriptive, multiple-center study. medRxiv 2020, 2020.03.01.20029397. [Google Scholar]
- Zhang, X.; Ji, Z.; Yue, Y. Infection risk assessment of COVID-19 through aerosol transmission: A Case study of south China seafood market. Environ. Sci. Technol. 2021, 55, 4123–4133. [Google Scholar] [CrossRef]
- Guan, W.-J.; Zheng, X.-Y.; Chung, K.F.; Zhong, N.-S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951. [Google Scholar] [CrossRef]
- Santus, P.; Russo, A.; Madonini, E. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respir 2012, 13, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhao, Y.; Zhou, W. Developing a novel hybrid model for the estimation of surface 8 h ozone (O3) across the remote Tibetan Plateau during 2005–2018. Atmos. Chem. Phys. 2020, 20, 6159–6175. [Google Scholar] [CrossRef]
- Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change and human health. Environ. Int. 2019, 132, 104987. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Alexander, B.; Geng, L.; Chi, x.; Fan, S.; Zhan, H. Isotopic constraints on heterogeneous sulfate production in Beijing haze. Atmos. Chem. Phys. 2018, 18, 5515–5528. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Hess, C.B.; Buchwald, Z.S.; Stokes, W.; Nasti, T.H.; Switchenko, J.M.; Weinberg, B.D.; Steinberg, J.P. Low-dose whole-lung radiation for COVID-19 pneumonia: Planned day 7 interim analysis of a registered clinical trial. Cancer 2020, 126, 5109–5113. [Google Scholar] [CrossRef]
- Zaki, N.; Mohamed, E.A. The Estimations of the COVID-19 Incubation Period: A Scoping Reviews of the Literature. medRxiv 2020, 14, 638–646. [Google Scholar] [CrossRef]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J. Effect of NOx and NO2 concentration increase in ambient air to daily bronchitis and asthma exacerbation, silesian voivodeship in Poland. Int. J. Environ. Res. Public Health 2020, 17, 754. [Google Scholar] [CrossRef] [Green Version]
- Morand, S. Emerging diseases, live.estock expansion and biodiversity loss are positively related at global scale. Biol. Conserv. 2020, 248, 108707. [Google Scholar] [CrossRef]
- Saadat, S.; Rawtani, D.; Hussain, C.M. Environmental perspective of COVID-19. Sci. Total Environ. 2020, 728, 138870. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Chen, K.; Zhu, S.; Wang, P.; Zhang, H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour. Conserv. Recycl. 2020, 158, 104814. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Kermani, M.; Jonidi Jafari, A.; Rezaei, R.; Sakhaet, F.S.; Kahe, T.S.; Dowlati, M. Evaluation of chronic obstructive pulmonary disease attributed to atmospheric O3, NO2 and SO2 in Tehran city, from 2005 to 2014. Iran. J. Health Saf. Environ. 2017, 4, 758–766. [Google Scholar]
- Keys, J.G.; Johnston, P.V. Stratospheric NO2 and O3 in Antarctica: Dynamic and chemically controlled variations. Geophys. Res. Lett. 1986, 13, 1260–1263. [Google Scholar] [CrossRef]
- Rollins, A.W.; Kiendler-Scharr, A.; Fry, J.L.; Brauers, T. Isoprene oxidation by nitrate radical: Alkyl nitrate and secondary organic aerosol yields. Atmos. Chem. Phys. 2009, 9, 6685–6703. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L.; Seinfeld, J.H. Winter ozone formation and VOC incremental reactivities in the Upper Green River Basin of Wyoming. Atmos. Environ. 2012, 50, 255266. [Google Scholar] [CrossRef]
- Saito, S.; Nagao, I.; Tanaka, H. Relationship of NOX and NMHC to photochemical O3 production in a coastal and metropolitan areas of Japan. Atmos. Environ. 2002, 36, 1277–1286. [Google Scholar] [CrossRef]
- Jiménez-Hornero, F.J.; Jiménez-Hornero, J.E.; Gutiérrez de Ravé, E.; Pavón-Domínguez, P. Exploring the relationship between nitrogen dioxide and ground-level ozone by applying the joint multifractal analysis. Environ. Monit. Assess. 2010, 167, 675–684. [Google Scholar] [CrossRef]
- Notario, A.; Bravo, I.; Adame, J.A. Analysis of NO, NO2, NOx, O3 and oxidant (OX = O3 + NO2) levels measured in a metropolitan area in the southwest of Iberian Peninsula. Atmos. Res. 2012, 104–105, 217–226. [Google Scholar] [CrossRef]
- Lewis, A.C.; Carslaw, N.; Marriott, P.J. A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 2000, 405, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.L. Composition and oxidative potential of PM2.5 pollution and health. J. Thorac. Dis. 2017, 9, 444–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bratsch, S.G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 1989, 18, 121. [Google Scholar] [CrossRef] [Green Version]
- Kanaya, Y.; Fukuda, M.; Akimoto, H.; Takegawa, N.; Komazaki, Y.; Yokouchi, Y.; Koike, M.; Kondo, Y. Urban photochemistry in central Tokyo: 2. Rates and regimes of oxidant (O3+ NO2) production. J. Geophys. 2008, 113, D6. [Google Scholar] [CrossRef]
O3 | NO2 | OX | Oxwt | |
---|---|---|---|---|
Beijing | 3.7% (−6.4%, 14%) | ## | ## | 0.23% (−4.1%, 4.7%) |
Tianjin | ## | ## | ## | ## |
Shanghai | ## | ## | ## | ## |
Chongqing | ## | 18% (−7.9%, 53%) | 1% (−9%,13%) | ## |
Shenyang | ## | 8.5% (−24%, 56%) | ## | ## |
Harbin | 4.3% (−11%, 23%) | 17% (−11%, 55%) | 0.7% (−10%,13%) | 2.4% (−4.1%, 9.5%) |
Changchun | ## | ## | ## | ## |
Shijiazhuang | ## | ## | ## | ## |
Jinan | ## | ## | ## | ## |
Nanjing | ## | 3.3% (−31%, 56%) | ## | ## |
Hangzhou | ## | ## | ## | ## |
Fuzhou | ## | ## | ## | ## |
Zhengzhou | 67% (30%, 114%) | ## | 49% (25%, 79%) | 24% (12%, 37%) |
Wuhan | 4.5% (3.1%, 5.9%) | ## | 15% (13%, 16%) | 4.9% (4.2%, 5.5%) |
Changsha | 3.2% (−7.9%, 15.9%) | 70% (3.1%, 183%) | 5.5% (−5.3%, 17%) | 2.1% (−3.2%, 7.8%) |
Hefei | ## | ## | 2.3% (−18%, 17%) | ## |
Guangzhou | 32% (19%, 46%) | 32% (6%, 64%) | 23% (13%, 33%) | 12% (7.8%, 17%) |
Nanning | ## | 40% (−58%, 370%) | ## | ## |
Lanzhou | 8.6% (−23%, 53%) | 3.7% (−27%, 49%) | 4.8% (−16%, 31%) | 3.2% (− 9.9%,18%) |
Yinchuan | ## | ## | ## | ## |
Taiyuan | ## | ## | ## | ## |
Huhehot | ## | ## | ## | ## |
Xi’an | 24% (−2.9%, 58%) | ## | 3% (−22%, 37%) | 3.8% (−10%, 20%) |
Urumqi | ## | 67% (−12%, 221%) | 26% (−36%, 151%) | ## |
Xining | ## | ## | ## | ## |
Lasa | ## | ## | ## | ## |
Chengdu | 1.1% (−14%, 20%) | 45% (−8.1%, 129%) | 4.8% (−10%, 22%) | 1.6% (−6%, 9.9%) |
Guiyang | 53% (−6.8%, 153%) | ## | 44% (−7.4%, 124%) | 21% (−3.4%, 51%) |
Haikou | ## | ## | ## | ## |
Kunming | 8.6% (−34%, 81%) | ## | 5.1% (−38%, 81%) | 3.3% (−19%, 33%) |
Nanchang | ## | ## | 11% (−1.5%, 25%) | 6% (−0.4%, 13%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Wang, Y.; Yao, K.; Yang, L.; Cheng, S. Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection. Atmosphere 2022, 13, 569. https://doi.org/10.3390/atmos13040569
Guo H, Wang Y, Yao K, Yang L, Cheng S. Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection. Atmosphere. 2022; 13(4):569. https://doi.org/10.3390/atmos13040569
Chicago/Turabian StyleGuo, Huibin, Yidan Wang, Kaixing Yao, Liu Yang, and Shiyu Cheng. 2022. "Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection" Atmosphere 13, no. 4: 569. https://doi.org/10.3390/atmos13040569
APA StyleGuo, H., Wang, Y., Yao, K., Yang, L., & Cheng, S. (2022). Comparisons of Combined Oxidant Capacity and Redox-Weighted Oxidant Capacity in Their Association with Increasing Levels of COVID-19 Infection. Atmosphere, 13(4), 569. https://doi.org/10.3390/atmos13040569