Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sample Collection
2.3. Simple Bioaccessibility Extraction Test (SBET)
2.3.1. Preparation of Extraction Fluid
2.3.2. Determination of Bioaccessible Concentrations of Toxic Metals in Roadside Dust
2.4. Toxic Metals Bioaccessibility
2.5. Human Health Risk Assessment
2.6. Statistical Analyses
3. Results and Discussion
3.1. Spatial Variability of Bioaccessible Concentrations of Toxic Metals in Roadside Dust in Dhaka City
3.2. Bioaccessibility (%) of Toxic Metals in the Gastric (GP) and Intestinal (IP) Phases
3.3. Health Risk Assessment of Toxic Metals in Road Dust
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Mihankhah, T.; Saeedi, M.; Karbassi, A. A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran’s urban area. Chemosphere 2020, 241, 124984. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef] [PubMed]
- Moskovchenko, D.; Pozhitkov, R.; Soromotin, A.; Tyurin, V. The content and sources of potentially toxic elements in the road dust of surgut (Russia). Atmosphere 2022, 13, 30. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Dat, N.D.; Vo, T.D.H.; Nguyen, D.H.; Nguyen, T.B.; Nguyen, L.S.P.; Nguyen, X.C.; Dinh, V.C.; Nguyen, T.H.H.; Huynh, T.M.T.; et al. Characteristics and risk assessment of 16 metals in street dust collected from a highway in a densely populated metropolitan area of vietnam. Atmosphere 2021, 12, 1548. [Google Scholar] [CrossRef]
- Sanleandro, P.M.; Navarro, A.S.; Díaz-Pereira, E.; Zuñiga, F.B.; Muñoz, M.R.; Iniesta, M.J.D. Assessment of heavy metals and color as indicators of contamination in street dust of a city in SE Spain: Influence of traffic intensity and sampling location. Sustainability 2018, 10, 4105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Hua, P.; Krebs, P. Influences of land use and antecedent dry-weather period on pollution level and ecological risk of heavy metals in road-deposited sediment. Environ. Pollut. 2017, 228, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Ishiga, H. Trace metal concentrations in street dusts of Dhaka city, Bangladesh. Atmos. Environ. 2006, 40, 3835–3844. [Google Scholar] [CrossRef]
- Safiur Rahman, M.; Khan, M.D.H.; Jolly, Y.N.; Kabir, J.; Akter, S.; Salam, A. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity: Dhaka, Bangladesh. Sci. Total Environ. 2019, 660, 1610–1622. [Google Scholar] [CrossRef]
- Haque, M.M.; Sultana, S.; Niloy, N.M.; Quraishi, S.B.; Tareq, S.M. Source apportionment, ecological, and human health risks of toxic metals in road dust of densely populated capital and connected major highway of Bangladesh. Environ. Sci. Pollut. Res. 2022. accepted article. [Google Scholar] [CrossRef]
- Kabir, M.H.; Rashid, M.H.; Wang, Q.; Wang, W.; Lu, S.; Yonemochi, S. Determination of Heavy Metal Contamination and Pollution Indices of Roadside Dust in Dhaka City, Bangladesh. Processes 2021, 9, 1732. [Google Scholar] [CrossRef]
- Kormoker, T.; Kabir, M.H.; Khan, R.; Islam, M.S.; Shammi, R.S.; Al, M.A.; Proshad, R.; Tamim, U.; Sarker, M.E.; Taj, M.T.I.; et al. Road dust–driven elemental distribution in megacity Dhaka, Bangladesh: Environmental, ecological, and human health risks assessment. Environ. Sci. Pollut. Res. 2021. accepted article. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kumar, S.; Nasiruddin, M.; Saha, N. Deciphering the origin of Cu, Pb and Zn contamination in school dust and soil of Dhaka, a megacity in Bangladesh. Environ. Sci. Pollut. Res. 2021, 28, 40808–40823. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Kumar, P.; Ullah, M.; Jolly, Y.N.; Akhter, S.; Kabir, J.; Begum, B.A.; Salam, A. Elemental analysis in surface soil and dust of roadside academic institutions in Dhaka city, Bangladesh and their impact on human health. Environ. Chem. Ecotoxicol. 2021, 3, 197–208. [Google Scholar] [CrossRef]
- Cave, M.R.; Survey, B.G.; Wragg, J.; Survey, B.G.; Palumbo-roe, B.; Survey, B.G. Measurement of the Bioaccessibility of Arsenic in UK Soils Measurement of the Bioaccessibility of Arsenic in UK Soils; British Geological Survey: Wilts, UK, 2003. [Google Scholar]
- Huang, J.; Li, F.; Zeng, G.; Liu, W.; Huang, X.; Xiao, Z. Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China. Sci. Total Environ. 2016, 541, 969–976. [Google Scholar] [CrossRef]
- Goldade, M.; Post, G.; Harnois, M.; Mosby, D.E.; Casteel, S.W.; Berti, W.; Carpenter, M.; Edwards, D.; Cragin, D.; Chappell, W.; et al. Advances in Evaluating the Oral Bioavailability of Inorganics in Soil for Use in Human Health Risk Assessment. Environ. Sci. Technol. 1999, 33, 3697–3705. [Google Scholar]
- Paustenbach, D.J. The practice of exposure assessment: A state-of-the-art review. J. Toxicol. Environ. Health Part B Crit. Rev. 2000, 3, 179–291. [Google Scholar] [CrossRef]
- Ruby, M.V.; Davis, A.; Link, T.E.; Schoof, R.; Chaney, R.L.; Freeman, G.B.; Bergstrom, P. Development of an in vitro sreening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ. Sci. Technol. 1993, 27, 2870–2877. [Google Scholar] [CrossRef]
- Enayat, S.; Mehdi, H.; Ehsan, F.; Masoud, A. Occurrence, potential sources, in vitro bioaccessibility and health risk assessment of heavy metal in indoor dust from different microenvironment of Bushehr, Iran. Environ. Geochem. Health 2020, 42, 3641–3658. [Google Scholar] [CrossRef]
- Gu, Y.-G.; Gao, Y.-P.; Lin, Q. Applied Geochemistry Contamination, bioaccessibility and human health risk of heavy metals in exposed-lawn soils from 28 urban parks in southern China’s largest city, Guangzhou. Appl. Geochem. 2016, 67, 52–58. [Google Scholar] [CrossRef]
- Cai, Y.; Li, F.; Zhang, J.; Zhu, X.; Li, Y.; Fu, J. Environmental Technology & Innovation Toxic metals in size-fractionated road dust from typical industrial district: Seasonal distribution, bioaccessibility and stochastic-fuzzy health risk management. Environ. Technol. Innov. 2021, 23, 101643. [Google Scholar] [CrossRef]
- Moore, F.; Vasiluk, L.; Hale, B.A. The influence of physicochemical parameters on bioaccessibility-adjusted hazard quotients for copper, lead and zinc in different grain size fractions of urban street dusts and soils. Environ. Geochem. Health 2018, 40, 1155–1174. [Google Scholar] [CrossRef]
- Han, Q.; Wang, M.; Cao, J.; Gui, C.; Liu, Y.; He, X.; He, Y.; Liu, Y. Ecotoxicology and Environmental Safety Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China. Ecotoxicol. Environ. Saf. 2020, 191, 110157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Shao, L.; Li, F. Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China. Environ. Sci. Pollut. Res. 2020, 27, 11760–11771. [Google Scholar] [CrossRef] [PubMed]
- Candeias, C.; Paula, F.Á.; Ferreira, E. Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine. Atmosphere 2021, 12, 685. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Cave, M.; Sorooshian, A.; Reza, M.; Reza, M.; Golshani, R. Ecotoxicology and Environmental Safety In vitro bioaccessibility, phase partitioning, and health risk of potentially toxic elements in dust of an iron mining and industrial complex. Ecotoxicol. Environ. Saf. 2021, 212, 111972. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.-X. Science of the Total Environment In vivo oral bioavailability of fi sh mercury and comparison with in vitro bioaccessibility. Sci. Total Environ. 2019, 683, 648–658. [Google Scholar] [CrossRef]
- Mukhtar, A.; Limbeck, A. Comparison of the extraction efficiencies of different leaching agents for reliable assessment of bio-accessible trace metal fractions in airborne particulate matter. E3S Web Conf. 2013, 1, 5001. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Padoan, E.; Romè, C.; Ajmone-marsan, F. Bioaccessibility and size distribution of metals in road dust and roadside soils along a peri-urban transect. Sci. Total Environ. 2017, 601–602, 89–98. [Google Scholar] [CrossRef]
- Silva, E.F. Assessment of the influence of traffic-related particles in urban dust using sequential selective extraction and oral bioaccessibility tests. Environ. Geochem. Health 2015, 37, 707–724. [Google Scholar] [CrossRef]
- Davidson, C.M.; Duncan, C.; Macnab, C.; Pringle, B.; Stables, S.J. Measuring Copper, Lead and Zinc Concentrations and Schools Project. Minerals 2019, 9, 173. [Google Scholar] [CrossRef] [Green Version]
- Lake, L.M.; Basta, N.T. Modifying Effect of Soil Properties on Bio-Accessibility of As and Pb from Human Ingestion of Contaminated Soil. Geosciences 2021, 11, 126. [Google Scholar] [CrossRef]
- Zingaretti, D.; Baciocchi, R. Different Approaches for Incorporating Bioaccessibility of Inorganics in Human Health Risk Assessment of Contaminated Soils. Appl. Sci. 2021, 11, 3005. [Google Scholar] [CrossRef]
- US EPA. Estimation of Relative Bioavailability of Lead in Soil and Soil-Like Materials Using In Vivo and In Vitro Methods. OSWER 9285.7–77. 2007. Available online: http://www.epa.gov/superfund/health/contaminants/bioavailability/guidance.htm (accessed on 15 February 2022).
- EPA 9200.1–86; Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil (2008). US EPA: Washington, DC, USA, 2008.
- Schulin, R.; Hepperle, E.; Ajmone, F.; Poggio, L.; Vrs, B. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environ. Pollut. 2009, 157, 680–689. [Google Scholar] [CrossRef]
- Segovia, C.M.; Mendoza, C.J.; Garrido, R.T.; Quilodr, R.C. Evaluation of the bioaccessible gastric and intestinal fractions of heavy metals in contaminated soils by means of a simple bioaccessibility extraction test. Chemosphere 2017, 176, 81–88. [Google Scholar] [CrossRef]
- EPA/600/R-09/052F; National Technical Information Service. US EPA: Springfield, VA, USA; Washington, DC, USA, 2011.
- US EPA. Region 9, Regional Screening Levels. 2010. Available online: http://www.epa.gov/region9/superfund/prg/index.html (accessed on 15 February 2022).
- Chen, G.; Wang, X.; Wang, R.; Liu, G. Ecotoxicology and Environmental Safety Health risk assessment of potentially harmful elements in subsidence water bodies using a Monte Carlo approach: An example from the Huainan coal mining area, China. Ecotoxicol. Environ. Saf. 2019, 171, 737–745. [Google Scholar] [CrossRef] [PubMed]
- USDOE. The Risk Assessment Information System (RAIS); U.S. Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2011. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 February 2022).
- Sialelli, J.; Urquhart, G.J.; Davidson, C.M.; Hursthouse, A.S. Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environ. Geochem. Health 2010, 32, 517–527. [Google Scholar] [CrossRef]
- Turner, A.; Ip, K.H. Bioaccessibility of metals in dust from the indoor environment: Application of a physiologically based extraction test. Environ. Sci. Technol. 2007, 41, 7851–7856. [Google Scholar] [CrossRef]
- Anagement, M.; State, E.; Elom, N.I.; Entwistle, J.A.; Dean, J.R. Oral bioaccessibility of potentially toxic elements (PTEs) in urban dusts of Abakaliki. J. Appl. Sci. Environ. Manag. 2014, 18, 235–240. [Google Scholar]
- Dong, S.; Zhang, S.; Wang, L.; Ma, G.; Lu, X.; Li, X. Concentrations, Speciation, and Bioavailability of Heavy Metals in Street Dust as well as Relationships with Physiochemcal Properties: A Case Study of Jinan City in East China. Environ. Sci. Pollut. Res. 2020, 27, 35724–35737. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yin, N.; Cai, X.; Wang, P.; Li, Y.; Fu, Y.; Sharmin, M. Lead bioaccessibility in farming and mining soils: The influence of soil properties, types and human gut microbiota. Sci. Total Environ. 2020, 708, 135227. [Google Scholar] [CrossRef]
- Hussain, M.; Codling, E.E.; Scheckel, K.G.; Chaney, R.L. In vitro and in vivo approaches for the measurement of oral bioavailability of lead (Pb) in contaminated soils: A review. Environ. Pollut. 2011, 159, 2320–2327. [Google Scholar] [CrossRef]
- Cai, M.; McBride, M.B.; Li, K. Bioaccessibility of Ba, Cu, Pb, and Zn in urban garden and orchard soils. Environ. Pollut. 2016, 208, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Wang, Y.; Zhou, Q. Human health risk assessment based on toxicity characteristic leaching procedure and simple bioaccessibility extraction test of toxic metals in urban street dust of Tianjin, China. PLoS ONE 2014, 9, e92459. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Li, Z.; Sun, G.; Liu, J.; Han, Z. In vitro bioaccessibility of lead in surface dust and implications for human exposure: A comparative study between industrial area and urban district. J. Hazard. Mater. 2015, 297, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Bi, X.; Li, Z.; Yang, W.; Wang, L.; Yang, H.; Li, F. Occurrence, speciation and bioaccessibility of lead in Chinese rural household dust and the associated health risk to children. Atmos. Environ. 2012, 46, 65–70. [Google Scholar] [CrossRef]
- Li, H.-H.; Chen, L.-J.; Yu, L.; Guo, Z.-B.; Shan, C.-Q.; Lin, J.-Q.; Gu, Y.-G.; Yang, Z.-B.; Yang, Y.-X.; Shao, J.-R.; et al. Science of the Total Environment Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Hermann, T.; Silva, M.R.D.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implica- tions for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Cui, X.; Li, H.; Qian, X.; Wang, C. Ecotoxicology and Environmental Safety Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotoxicol. Environ. Saf. 2016, 128, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Hou, S.; Wang, S.; Sun, S.; An, Q.; Li, P.; Li, X. Ecotoxicology and Environmental Safety Health risk assessment of heavy metals in street dust around a zinc smelting plant in China based on bioavailability and bioaccessibility. Ecotoxicol. Environ. Saf. 2020, 197, 110617. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Chen, L.J.; Li, H.H.; Lin, J.Q.; Yang, Z.B.; Yang, Y.X.; Xu, X.X.; Xian, J.R.; Shao, J.R.; Zhu, X.M. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci. Total Environ. 2018, 619–620, 621–629. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Ferreira-baptista, L.; Miguel, E.D. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, P.E.; Levesque, C.; Chénier, M.; Gardner, H.D. Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust. Build. Environ. 2018, 143, 513–522. [Google Scholar] [CrossRef]
- Bacigalupo, C.; Hale, B. Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: A probabilistic screening tool. Sci. Total Environ. 2012, 423, 27–38. [Google Scholar] [CrossRef]
- Das, M.; Ahmed, M.K.; Islam, M.S.; Islam, M.M.; Akter, M.S. Heavy metals in industrial effluents (tannery and textile) and adjacent rivers of Dhaka city, Bangladesh. Terr. Aquat. Environ. Toxicol. 2011, 5, 8–13. [Google Scholar]
Factor | Definition | Unit | Permissible Limit for Children | Permissible Limit for Adult | Reference |
---|---|---|---|---|---|
ED | Exposure duration | year | 6 | 25 | [41] |
EF | Exposure frequency | days/year | 250 | 250 | [41] |
BW | Average body weight | kg | 15 | 61.8 | [41] |
ATnon-cancer | Average time of exposure | days | ED × 365 | ED × 365 | [41] |
ATcancer | Average time of exposure | days | 70 × 365 | 70 × 365 | [41] |
IngR | Ingestion rate | mg/day | 200 | 100 | [41] |
RfD | Reference doses | - | 3 × 10−3 (Cr); 2.4 × 10−2 (Mn); 2 × 10−2 (Co); 2 × 10−2 (Ni); 4 × 10−2 (Cu); 3 × 10−1 (Zn); 3 × 10−4 (As); 3.5 × 10−3 (Pb) | [42] | |
CSF | Cancer slope factor | - | 5.0 × 10−1 (Cr); 8.5 × 10−3 (Pb); 1.5 × 100 (As); 1.7 × 100 (Ni) | [41,43,44] |
Toxic Metals | Content | CA | PRA | SRA | UGA |
---|---|---|---|---|---|
Cr | Total Concentration | 82.45 ± 12.25 | 95.61 ± 23.09 | 77.75 ± 6.63 | 65.08 ± 12.48 |
Bioaccessible GP | 7.95 ± 0.4 | 10.21 ± 3.73 | 7.38 ± 1.55 | 5.7 ± 1.67 | |
Bioaccessible IP | 18.18 ± 0.87 | 21.88 ± 3.94 | 19.78 ± 2.72 | 17.37 ± 2.88 | |
Mn | Total Concentration | 569.98 ± 113.83 | 507.97 ± 59.03 | 456.04 ± 47.75 | 538.28 ± 96.63 |
Bioaccessible GP | 92.32 ± 10.69 | 94.41 ± 5.69 | 76.45 ± 5.29 | 95.88 ± 25.85 | |
Bioaccessible IP | 96.83 ± 11.11 | 104.49 ± 7.29 | 86.86 ± 6.99 | 100.49 ± 16.44 | |
Co | Total Concentration | 9.84 ± 3.06 | 8.19 ± 1.37 | 7.46 ± 0.79 | 8.17 ± 0.73 |
Bioaccessible GP | 1.2 ± 0.5 | 1.04 ± 0.24 | 0.76 ± 0.1 | 0.75 ± 0.16 | |
Bioaccessible IP | 12.56 ± 0.89 | 12.39 ± 0.46 | 11.96 ± 0.21 | 11.92 ± 0.31 | |
Ni | Total Concentration | 57.53 ± 36.89 | 36.26 ± 4.29 | 34.11 ± 8.88 | 44.54 ± 15.80 |
Bioaccessible GP | 8.19 ± 3.18 | 5.38 ± 0.35 | 4.08 ± 0.73 | 6.79 ± 4.16 | |
Bioaccessible IP | 6.85 ± 4.71 | 3.76 ± 1.0 | 1.33 ± 1.44 | 5.71 ± 7.21 | |
Cu | Total Concentration | 227.68 ± 129.11 | 161.79 ± 66.55 | 92.19 ± 15.59 | 75.6 ± 21.65 |
Bioaccessible GP | 68.35 ± 49.27 | 38.12 ± 17.0 | 22.04 ± 3.35 | 17.12 ± 5.55 | |
Bioaccessible IP | 135.52 ± 82.32 | 95.62 ± 44.92 | 61.16 ± 17.91 | 65.44 ± 18.58 | |
Zn | Total Concentration | 686.22 ± 153.92 | 506.03 ± 65.55 | 429.23 ± 98.54 | 295.89 ± 61.11 |
Bioaccessible GP | 244.45 ± 67.01 | 151.41 ± 25.77 | 124.78 ± 34.09 | 74.36 ± 18.50 | |
Bioaccessible IP | 277.65 ± 76.69 | 196.55 ± 33.95 | 143.33 ± 29.48 | 85.1 ± 27.07 | |
As | Total Concentration | 5.15 ± 0.99 | 4.71 ± 0.43 | 4.68 ± 0.57 | 4.93 ± 0.63 |
Bioaccessible GP | 2.99 ± 0.3 | 2.86 ± 0.29 | 2.51 ± 0.13 | 2.42 ± 0.16 | |
Bioaccessible IP | nd | nd | nd | nd | |
Pb | Total Concentration | 72.11 ± 12.68 | 73.72 ± 36.11 | 52.75 ± 10.54 | 36.72 ± 15.98 |
Bioaccessible GP | 28.18 ± 5.42 | 26.4 ± 11.72 | 17.55 ± 3.98 | 11.87 ± 7.79 | |
Bioaccessible IP | 8.48 ± 0.24 | 8.48 ± 0.51 | 8.01 ± 0.11 | 7.71 ± 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabir, M.H.; Wang, Q.; Rashid, M.H.; Wang, W.; Isobe, Y. Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. Atmosphere 2022, 13, 488. https://doi.org/10.3390/atmos13030488
Kabir MH, Wang Q, Rashid MH, Wang W, Isobe Y. Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. Atmosphere. 2022; 13(3):488. https://doi.org/10.3390/atmos13030488
Chicago/Turabian StyleKabir, Md Humayun, Qingyue Wang, Md Harun Rashid, Weiqian Wang, and Yugo Isobe. 2022. "Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh" Atmosphere 13, no. 3: 488. https://doi.org/10.3390/atmos13030488
APA StyleKabir, M. H., Wang, Q., Rashid, M. H., Wang, W., & Isobe, Y. (2022). Assessment of Bioaccessibility and Health Risks of Toxic Metals in Roadside Dust of Dhaka City, Bangladesh. Atmosphere, 13(3), 488. https://doi.org/10.3390/atmos13030488