Management of a Mediterranean Forage/Cereal-Based Cropping System: An Ecosystem Service Multisectoral Analysis in the Perspective of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Management Practices
2.2.1. Experimental Design
2.2.2. Management Practices
2.3. Sampling
2.3.1. Botanical Survey
2.3.2. Biomass Sampling
2.3.3. Soil Sampling
2.3.4. Greenhouse Gas Sampling
2.4. Plant Biodiversity and Ecosystem Service Indicators
2.4.1. Biodiversity Indicators
2.4.2. Regulating Services
2.4.3. Supporting Services
2.4.4. Provisioning Services
2.4.5. Integrated Provision of Ecosystem Services and Data Analysis
3. Results
3.1. Plant Biodiversity
3.2. Regulating Services
3.3. Supporting Services
3.4. Provisioning Services
3.5. Ecosystem Service Global Value
4. Discussion
4.1. Regulating Services
4.2. Supporting Services
4.3. Provisioning Services
4.4. Recommendations for Future Policies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014.
- Streimikis, J.; Baležentis, T. Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustain. Dev. 2020, 28, 1702–1712. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Tubiello, F.N. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Six, J.; Elliott, E.T.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- Toderi, M.; D’Ottavio, P.; Francioni, M.; Kishimoto-Mo, A.W.; Santilocchi, R.; Trozzo, L. Short-term response of soil greenhouse gas fluxes to alfalfa termination methods in a Mediterranean cropping system. Soil Sci. Plant Nutr. 2021, 1–9. [Google Scholar] [CrossRef]
- Trozzo, L.; Francioni, M.; Wenhong Kishimoto-Mo, A.; Foresi, L.; Bianchelli, M.; Baldoni, N.; D’Ottavio, P.; Toderi, M. Soil N2O emissions after perennial legume termination in an alfalfa-wheat crop rotation system under Mediterranean conditions. Ital. J. Agron. 2020, 15, 229–238. [Google Scholar] [CrossRef]
- Francioni, M.; Lai, R.; D’Ottavio, P.; Trozzo, L.; Kishimoto-Mo, A.W.; Budimir, K.; Baldoni, N.; Toderi, M. Soil respiration dynamics in forage-based and cereal-based cropping systems in central Italy. Sci. Agric. 2020, 77, e20180096. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Angeletti, C.; Monaci, E.; Giannetta, B.; Polverigiani, S.; Vischetti, C. Soil organic matter content and chemical composition under two rotation management systems in a Mediterranean climate. Pedosphere 2021, 31, 903–911. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Copani, V.; Scalici, G.; Scordia, D.; Testa, G. Soil Erosion Mitigation by Perennial Species Under Mediterranean Environment. Bioenergy Res. 2015, 8, 1538–1547. [Google Scholar] [CrossRef]
- Toderi, M.; Powell, N.; Seddaiu, G.; Roggero, P.P.; Gibbon, D. Combining social learning with agro-ecological research practice for more effective management of nitrate pollution. Environ. Sci. Policy 2007, 10, 551–563. [Google Scholar] [CrossRef]
- Lassaletta, L.; Sanz-Cobena, A.; Aguilera, E.; Quemada, M.; Billen, G.; Bondeau, A.; Cayuela, M.L.; Cramer, W.; Eekhout, J.P.C.; Garnier, J.; et al. Nitrogen dynamics in cropping systems under Mediterranean climate: A systemic analysis. Environ. Res. Lett. 2021, 16, 073002. [Google Scholar] [CrossRef]
- Neri, D.; Silvestroni, O.; Baldoni, N.; Belletti, M.; Bellucci, E.; Bitocchi, E.; Capocasa, F.; D’Ottavio, P.; Francioni, M.; Gambelli, D.; et al. Sustainable Crop Production. In The First Outstanding 50 Years of “Università Politecnica delle Marche”; Springer International Publishing: Cham, Switzerland, 2020; pp. 583–600. [Google Scholar]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Lescourret, F.; Magda, D.; Richard, G.; Adam-Blondon, A.F.; Bardy, M.; Baudry, J.; Doussan, I.; Dumont, B.; Lefèvre, F.; Litrico, I.; et al. A social-ecological approach to managing multiple agro-ecosystem services. Curr. Opin. Environ. Sustain. 2015, 14, 68–75. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Alcamo, J.; Ash, N.J.; Butler, C.D.; Callicot, J.B.; Capistrano, D.; Carpenter, S.R. Ecosystems and Human Well-Being: A Framework for Assessment; Island Press: Washington, DC, USA, 2003; ISBN 1-55963-403-0. [Google Scholar]
- Duraiappah, A.K.; Naeem, S.; Agardy, T.; Ash, N.J.; Cooper, H.D.; Díaz, S.; Faith, D.P.; Mace, G.; McNeely, J.A.; Mooney, H.A.; et al. Ecosystems and Human Well-Being: Synthesis; World Resources Institute: Washington, DC, USA, 2005; Volume 5, ISBN 1-59726-040-1. [Google Scholar]
- D’Ottavio, P.; Francioni, M.; Trozzo, L.; Sedić, E.; Budimir, K.; Avanzolini, P.; Trombetta, M.F.; Porqueddu, C.; Santilocchi, R.; Toderi, M. Trends and approaches in the analysis of ecosystem services provided by grazing systems: A review. Grass Forage Sci. 2018, 73, 15–25. [Google Scholar] [CrossRef]
- Budimir, K.; Mozzon, M.; Toderi, M.; D’Ottavio, P.; Trombetta, M.F. Effect of breed on fatty acid composition of meat and subcutaneous adipose tissue of light lambs. Animals 2020, 10, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budimir, K.; Trombetta, M.F.; Francioni, M.; Toderi, M.; D’Ottavio, P. Slaughter performance and carcass and meat quality of Bergamasca light lambs according to slaughter age. Small Rumin. Res. 2018, 164, 1–7. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Mereu, V.; Gallo, A.; Trabucco, A.; Carboni, G.; Spano, D. Modeling high-resolution climate change impacts on wheat and maize in Italy. Clim. Risk Manag. 2021, 33, 100339. [Google Scholar] [CrossRef]
- Dal Ferro, N.; Piccoli, I.; Berti, A.; Polese, R.; Morari, F. Organic carbon storage potential in deep agricultural soil layers: Evidence from long-term experiments in northeast Italy. Agric. Ecosyst. Environ. 2020, 300, 106967. [Google Scholar] [CrossRef]
- Krstić, D.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The effect of cover crops on soil water balance in rain-fed conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management, 2nd ed.; Routledge: London, UK, 2015; ISBN 9780415704151. [Google Scholar]
- Woolf, D.; Lehmann, J.; Ogle, S.; Kishimoto-Mo, A.W.; McConkey, B.; Baldock, J. Greenhouse Gas Inventory Model for Biochar Additions to Soil. Environ. Sci. Technol. 2021, 55, 14795–14805. [Google Scholar] [CrossRef] [PubMed]
- McGreevy, S.R.; Shibata, A. A Rural Revitalization Scheme in Japan Utilizing Biochar and Eco-Branding: The Carbon Minus Project, Kameoka City. Ann. Environ. Sci. 2010, 4, 11–22. [Google Scholar]
- Hansen, V.; Müller-Stöver, D.; Ahrenfeldt, J.; Holm, J.K.; Henriksen, U.B.; Hauggaard-Nielsen, H. Gasification biochar as a valuable by-product for carbon sequestration and soil amendment. Biomass Bioenergy 2015, 72, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Hansen, V.; Müller-Stöver, D.; Munkholm, L.J.; Peltre, C.; Hauggaard-Nielsen, H.; Jensen, L.S. The effect of straw and wood gasification biochar on carbon sequestration, selected soil fertility indicators and functional groups in soil: An incubation study. Geoderma 2016, 269, 99–107. [Google Scholar] [CrossRef]
- Pourhashem, G.; Hung, S.Y.; Medlock, K.B.; Masiello, C.A. Policy support for biochar: Review and recommendations. GCB Bioenergy 2019, 11, 364–380. [Google Scholar] [CrossRef] [Green Version]
- Brewer, C.E.; Unger, R.; Schmidt-Rohr, K.; Brown, R.C. Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties. Bioenergy Res. 2011, 4, 312–323. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, Z.; Kuzyakov, Y. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy 2016, 8, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Monaci, E.; Polverigiani, S.; Neri, D.; Bianchelli, M.; Santilocchi, R.; Toderi, M.; D’Ottavio, P.D.; Vischetti, C. Effect of contrasting crop rotation systems on soil chemical and biochemical properties and plant root growth in organic farming: First results. Ital. J. Agron. 2017, 12, 364–374. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Zhou, X.; Jiang, L.; Li, M.; Du, Z.; Zhou, G.; Shao, J.; Wang, X.; Xu, Z.; Hosseini Bai, S.; et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 2017, 9, 743–755. [Google Scholar] [CrossRef]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?-A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef] [PubMed]
- Jogezai, S.; Taj, M.K.; Shahzad, F.; Khan, A.W. Role of alfalfa in natural environment. J. Biodivers. Environ. Sci. 2019, 15, 25–31. [Google Scholar]
- Ledo, A.; Smith, P.; Zerihun, A.; Whitaker, J.; Vicente-Vicente, J.L.; Qin, Z.; McNamara, N.P.; Zinn, Y.L.; Llorente, M.; Liebig, M.; et al. Changes in soil organic carbon under perennial crops. Glob. Chang. Biol. 2020, 26, 4158–4168. [Google Scholar] [CrossRef]
- Sulas, L.; Seddaiu, G.; Muresu, R.; Roggero, P.P. Nitrogen fixation of sulla under mediterranean conditions. Agron. J. 2009, 101, 1470–1478. [Google Scholar] [CrossRef]
- Coruh, I.; Tan, M. Lucerne persistence, yield and quality as influenced by stand aging. N. Z. J. Agric. Res. 2008, 51, 39–43. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, Z.G.; Li, M.Y.; Wang, B.Z.; Li, J.Y.; Wang, W.; Su, Y.Z.; Batool, A.; Xiong, Y.C. Increasing periods after seeding under twice-annually harvested alfalfa reduces soil carbon and nitrogen stocks in a semiarid environment. Land Degrad. Dev. 2020, 31, 2872–2882. [Google Scholar] [CrossRef]
- Braun-Blanquet, J. Pflanzensoziologie: Grundzüge der Vegetationskunde; Springer: Berlin/Heidelberg, Germany, 1951; ISBN 3709140781. [Google Scholar]
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E.; et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2018, 152, 179–303. [Google Scholar] [CrossRef]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982; Volume II, ISBN 9788820623104. [Google Scholar]
- Davidson, E.A.; Belk, E.; Boone, R.D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob. Chang. Biol. 1998, 4, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Osborne, J.W. Improving your data transformations: Applying the Box-Cox transformation. Pract. Assess. Res. Eval. 2010, 15, 12. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R.; Lahmar, R.; Mrabet, R.; Basch, G.; González-Sánchez, E.J.; Serraj, R. Conservation agriculture in the dry Mediterranean climate. Field Crops Res. 2012, 132, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Von Döhren, P.; Haase, D. Ecosystem disservices research: A review of the state of the art with a focus on cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- Aguilera, E.; Reyes-Palomo, C.; Díaz-Gaona, C.; Sanz-Cobena, A.; Smith, P.; García-Laureano, R.; Rodríguez-Estévez, V. Greenhouse gas emissions from Mediterranean agriculture: Evidence of unbalanced research efforts and knowledge gaps. Glob. Environ. Chang. 2021, 69, 102319. [Google Scholar] [CrossRef]
- Badagliacca, G.; Rees, R.M.; Giambalvo, D.; Saia, S. Vertisols and cambisols had contrasting short term greenhouse gas responses to crop residue management. Plant Soil Environ. 2020, 66, 222–233. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Cantero-Martínez, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Impact of tillage and N fertilization rate on soil N2O emissions in irrigated maize in a Mediterranean agroecosystem. Agric. Ecosyst. Environ. 2020, 287, 106687. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- You, S.; Ok, Y.S.; Chen, S.S.; Tsang, D.C.W.; Kwon, E.E.; Lee, J.; Wang, C.H. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Wang, J.; Zhang, T.; Hu, Z. Climatic, soil, and vegetation controls of the temperature sensitivity (Q10) of soil respiration across terrestrial biomes. Glob. Ecol. Conserv. 2020, 22, e00955. [Google Scholar] [CrossRef]
- Zhao, X.; Shi, L.; Lou, S.; Ning, J.; Guo, Y.; Jia, Q.; Hou, F. Sheep Excrement Increases Mass of Greenhouse Gases Emissions from Soil Growing Two Forage Crop and Multi-Cutting Reduces Intensity. Agriculture 2021, 11, 238. [Google Scholar] [CrossRef]
- Cocco, S.; Agnelli, A.; Gobran, G.R.; Corti, G. Changes induced by the roots of Erica arborea L. to create a suitable environment in a soil developed from alkaline and fine-textured marine sediments. Plant Soil 2013, 368, 297–313. [Google Scholar] [CrossRef]
- Piacentini, T.; Galli, A.; Marsala, V.; Miccadei, E. Analysis of soil erosion induced by heavy rainfall: A case study from the NE Abruzzo Hills Area in Central Italy. Water 2018, 10, 1314. [Google Scholar] [CrossRef] [Green Version]
- Dai, Z.; Zhang, X.; Tang, C.; Muhammad, N.; Wu, J.; Brookes, P.C.; Xu, J. Potential role of biochars in decreasing soil acidification—A critical review. Sci. Total Environ. 2017, 581–582, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Zhang, X.; Zhang, Q.; Wu, Z.; Xiong, Z. Field-aged biochar stimulated N 2 O production from greenhouse vegetable production soils by nitrification and denitrification. Sci. Total Environ. 2018, 642, 1303–1310. [Google Scholar] [CrossRef]
- Hulugalle, N.R.; McCorkell, B.E.; Weaver, T.B.; Finlay, L.A.; Gleeson, J. Soil properties in furrows of an irrigated Vertisol sown with continuous cotton (Gossypium hirsutum L.). Soil Tillage Res. 2007, 97, 162–171. [Google Scholar] [CrossRef]
- Malhi, S.S.; Légère, A.; Vanasse, A.; Parent, G. Effects of long-term tillage, terminating no-till and cropping system on organic C and N, and available nutrients in a Gleysolic soil in Québec, Canada. J. Agric. Sci. 2018, 156, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Krauss, M.; Ruser, R.; Müller, T.; Hansen, S.; Mäder, P.; Gattinger, A. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley—Winter wheat cropping sequence. Agric. Ecosyst. Environ. 2017, 239, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Taffetani, F.; Rismondo, M. Bioindicator system for the evaluation of the environmental quality of agro-ecosystems. Fitosociologia 2009, 46, 3–22. [Google Scholar]
- Jeffery, S.; Abalos, D.; Prodana, M.; Bastos, A.C.; Van Groenigen, J.W.; Hungate, B.A.; Verheijen, F. Biochar boosts tropical but not temperate crop yields. Environ. Res. Lett. 2017, 12, 053001. [Google Scholar] [CrossRef]
- Ye, L.; Camps-Arbestain, M.; Shen, Q.; Lehmann, J.; Singh, B.; Sabir, M. Biochar effects on crop yields with and without fertilizer: A meta-analysis of field studies using separate controls. Soil Use Manag. 2020, 36, 2–18. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Rural Development Programme of Marche Region 2014–2020. Available online: https://www.regione.marche.it/Entra-in-Regione/Psr-Marche (accessed on 14 January 2022).
- Toderi, M.; Francioni, M.; Seddaiu, G.; Roggero, P.P.; Trozzo, L.; D’Ottavio, P. Bottom-up design process of agri-environmental measures at a landscape scale: Evidence from case studies on biodiversity conservation and water protection. Land Use Policy 2017, 68, 295–305. [Google Scholar] [CrossRef]
- Tesei, G.; D’Ottavio, P.; Toderi, M.; Ottaviani, C.; Pesaresi, S.; Francioni, M.; Trozzo, L.; Allegrezza, M. Restoration strategies for grasslands colonized by Asphodel-dominant communities. Grassl. Sci. 2020, 66, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Francioni, M.; Trozzo, L.; Toderi, M.; Baldoni, N.; Allegrezza, M.; Tesei, G.; Kishimoto-Mo, A.W.; Foresi, L.; Santilocchi, R.; D’Ottavio, P. Soil respiration dynamics in Bromus erectus-dominated grasslands under different management intensities. Agriculture 2020, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Francioni, M.; D’Ottavio, P.; Lai, R.; Trozzo, L.; Budimir, K.; Foresi, L.; Kishimoto-Mo, A.W.; Baldoni, N.; Allegrezza, M.; Tesei, G.; et al. Seasonal soil respiration dynamics and carbon-stock variations in mountain permanent grasslands compared to arable lands. Agriculture 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
Season | Biodiversity Index | Detail | Management System | ||
---|---|---|---|---|---|
WW | WWB60 | AEXT | |||
2018 | Life forms (n) | Perennial | 1.3 b | 2.0 ab | 3.0 a |
Biennial | 0.3 | 0.3 | 0.0 | ||
Annual | 6.3 a | 5.3 b | 7.7 a | ||
Life forms (%) | Perennial | 3.1 b | 2.7 b | 68.6 a | |
Biennial | 0.1 | 0.1 | 0.0 | ||
Annual | 96.9 a | 97.3 a | 31.4 b | ||
Species Richness | - | 8.0 b | 7.7 b | 10.7 a | |
2019 | Life forms (n) | Perennial | 3.3 | 1.7 | 3.7 |
Biennial | 2.0 a | 1.7 ab | 1.0 b | ||
Annual | 9.0 | 8.3 | 9.3 | ||
Life forms (%) | Perennial | 2.2 b | 0.3 b | 64.7 a | |
Biennial | 3.6 | 3.7 | 1.5 | ||
Annual | 94.3 a | 96.0 a | 33.8 b | ||
Species richness | - | 14.3 | 11.7 | 14.0 |
Season | Ecosystem Services | Management System | |||
---|---|---|---|---|---|
Group | Service | WW | WWB60 | AEXT | |
2018 | Regulating | GWP | 19.68 ± 2.06 | 20.63 ± 1.73 | 17.33 ± 2.25 |
Q10 | 1.74 ± 0.07 a | 1.67 ± 0.1 ab | 1.59 ± 0.02 b | ||
GHG-I | 9.02 ± 4.77 ab | 10.05 ± 4.68 a | 2.61 ± 0.53 b | ||
TOC | 8.40 ± 0.87 b | 16.95 ± 1.73 a | 9.60 ± 2.61 b | ||
SVC | 41.40 ± 1.94 b | 37.96 ± 5.29 b | 74.21 ± 1.21 a | ||
Supporting | pH | 8.18 ± 0.05 | 8.23 ± 0.04 | 8.13 ± 0.04 | |
C/N ratio | 8.68 ± 0.26 b | 17.41 ± 2.09 a | 9.82 ± 2.15 b | ||
N-tot | 0.97 ± 0.07 | 0.98 ± 0.03 | 0.98 ± 0.11 | ||
Provisioning | NRG | 47.38 ± 22.45 ab | 43.36 ± 19.53 b | 122.08 ± 14.39 a | |
2019 | Regulating | GWP | 11.88 ± 0.48 | 14.98 ± 1.72 | 11.34 ± 1.52 |
Q10 | 1.89 ± 0.11 | 1.69 ± 0.16 | 1.93 ± 0.35 | ||
GHG-I | 4.01 ± 1.66 a | 6.24 ± 1.22 a | 1.02 ± 0.32 b | ||
TOC | 9.10 ± 0.95 c | 19.40 ± 2.21 a | 11.25 ± 1.15 b | ||
SVC | 50.27 ± 1.85 b | 50.27 ± 1.85 b | 71.50 ± 0.41 a | ||
Supporting | pH | 8.28 ± 0.04 a | 8.32 ± 0.02 a | 8.19 ± 0.01 b | |
C/N ratio | 10.07 ± 0.48 b | 19.62 ± 2.88 a | 8.39 ± 0.74 b | ||
N-tot | 0.91 ± 0.14 | 0.99 ± 0.04 | 1.34 ± 0.10 | ||
Provisioning | NRG | 59.00 ± 18.43 b | 45.29 ± 12.58 b | 209.90 ± 44.78 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francioni, M.; Trozzo, L.; Baldoni, N.; Toderi, M.; Bianchini, M.; Kishimoto-Mo, A.W.; D’Ottavio, P. Management of a Mediterranean Forage/Cereal-Based Cropping System: An Ecosystem Service Multisectoral Analysis in the Perspective of Climate Change. Atmosphere 2022, 13, 487. https://doi.org/10.3390/atmos13030487
Francioni M, Trozzo L, Baldoni N, Toderi M, Bianchini M, Kishimoto-Mo AW, D’Ottavio P. Management of a Mediterranean Forage/Cereal-Based Cropping System: An Ecosystem Service Multisectoral Analysis in the Perspective of Climate Change. Atmosphere. 2022; 13(3):487. https://doi.org/10.3390/atmos13030487
Chicago/Turabian StyleFrancioni, Matteo, Laura Trozzo, Nora Baldoni, Marco Toderi, Marco Bianchini, Ayaka Wenhong Kishimoto-Mo, and Paride D’Ottavio. 2022. "Management of a Mediterranean Forage/Cereal-Based Cropping System: An Ecosystem Service Multisectoral Analysis in the Perspective of Climate Change" Atmosphere 13, no. 3: 487. https://doi.org/10.3390/atmos13030487
APA StyleFrancioni, M., Trozzo, L., Baldoni, N., Toderi, M., Bianchini, M., Kishimoto-Mo, A. W., & D’Ottavio, P. (2022). Management of a Mediterranean Forage/Cereal-Based Cropping System: An Ecosystem Service Multisectoral Analysis in the Perspective of Climate Change. Atmosphere, 13(3), 487. https://doi.org/10.3390/atmos13030487