Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport
Abstract
:1. Introduction
2. Experimental Set-Up and Data Processing
3. Methods
3.1. Quadrant Analysis
3.2. The Isotropic Threshold Technique
4. Results and Discussion
4.1. The Isotropic Characteristics of Small Events
4.2. The Dominant Turbulent Structures
4.3. Influence of Atmospheric Stability on the Large-Scale Turbulent Transport
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Robinson, S.K. Coherent Motions in the Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 1991, 23, 601–639. [Google Scholar] [CrossRef]
- Kline, S.J.; Reynolds, W.C.; Schraub, F.A.; Runstadler, P.W. The structure of turbulent boundary layers. J. Fluid Mech. 1967, 30, 741. [Google Scholar] [CrossRef] [Green Version]
- Corino, E.R.; Brodkey, R.S. A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 1969, 37, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Willmarth, W.W.; Lu, S.S. Structure of the reynolds stress near the wall. J. Fluid Mech. 1972, 55, 65–92. [Google Scholar] [CrossRef]
- Lu, S.S.; Willmarth, W.W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 1973, 60, 481–511. [Google Scholar] [CrossRef]
- Raupach, M.R.; Coppin, P.A.; Legg, B.J. Experiments on scalar dispersion within a model plant canopy part I: The turbulence structure. Bound. Layer Meteorol. 1986, 35, 21–52. [Google Scholar] [CrossRef]
- Narasimha, R.; Kumar, S.R.; Prabhu, A.; Kailas, S.V. Turbulent flux events in a nearly neutral atmospheric boundary layer. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 841–858. [Google Scholar] [CrossRef]
- Schmutz, M.; Vogt, R. Flux Similarity and Turbulent Transport of Momentum, Heat and Carbon Dioxide in the Urban Boundary Layer. Bound. Layer Meteorol. 2019, 172, 45–65. [Google Scholar] [CrossRef]
- Tiederman, W.G. Timescale and structure of ejections and bursts in turbulent channel flows. J. Fluid Mech. 1987, 174, 529–552. [Google Scholar] [CrossRef]
- Steiner, A.L.; Pressley, S.N.; Botros, A.; Jones, E.; Chung, S.H.; Edburg, S.L. Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign. Atmos. Chem. Phys. 2011, 11, 11921–11936. [Google Scholar] [CrossRef] [Green Version]
- Katul, G.; Kuhn, G.; Schieldge, J.; Hsieh, C.I. The ejection-sweep character of scalar fluxes in the unstable surface layer. Bound.-Layer Meteorol. 1997, 83, 1–26. [Google Scholar] [CrossRef]
- Li, D.; Bou-Zeid, E. Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable Atmospheric surface layer. Bound.-Layer Meteorol. 2011, 140, 243–262. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nezu, I. Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J. Fluid Mech. 1977, 80, 99–128. [Google Scholar] [CrossRef]
- Shiau, B.S.; Chen, Y. Bin Observation on wind turbulence characteristics and velocity spectra near the ground at the coastal region. J. Wind Eng. Ind. Aerodyn. 2002, 90, 1671–1681. [Google Scholar] [CrossRef]
- Katul, G.; Hsieh, C.I.; Kuhn, G.; Ellsworth, D.; Nie, D. Turbulent eddy motion at the forest-atmosphere interface. J. Geophys. Res. Atmos. 1997, 102, 13409–13421. [Google Scholar] [CrossRef]
- Sahlée, E.; Rutgersson, A.; Podgrajsek, E.; Bergström, H. Influence from Surrounding Land on the Turbulence Measurements Above a Lake. Bound.-Layer Meteorol. 2014, 150, 235–258. [Google Scholar] [CrossRef]
- Shaw, R.H.; Tavangar, J.; Ward, D.P. Structure of the Reynolds stress in a canopy layer. J. Clim. Appl. Meteorol. 1983, 22, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 253–264. [Google Scholar] [CrossRef]
- Dupont, S.; Patton, E.G. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: The CHATS experiment. Atmos. Chem. Phys. 2012, 12, 5913–5935. [Google Scholar] [CrossRef] [Green Version]
- Lan, C.; Liu, H.; Li, D.; Katul, G.G.; Finn, D. Distinct Turbulence Structures in Stably Stratified Boundary Layers With Weak and Strong Surface Shear. J. Geophys. Res. Atmos. 2018, 123, 7839–7854. [Google Scholar] [CrossRef]
- Francone, C.; Katul, G.G.; Cassardo, C.; Richiardone, R. Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards. Agric. For. Meteorol. 2012, 162–163, 98–107. [Google Scholar] [CrossRef]
- Weng, S.; Li, Y.; Wei, J.; Du, W.; Gao, X.; Wang, W.; Wang, J. Study on turbulence characteristics and sensitivity of quadrant analysis to threshold level in Lake Taihu. Environ. Sci. Pollut. Res. 2018, 25, 14499–14510. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Sjöblom, A.; Sahlée, E.; Falck, E.; Rutgersson, A. Enhanced Air–Sea Exchange of Heat and Carbon Dioxide Over a High Arctic Fjord During Unstable Very-Close-to-Neutral Conditions. Bound.-Layer Meteorol. 2019, 170, 471–488. [Google Scholar] [CrossRef] [Green Version]
- Feigenwinter, C.; Vogt, R.; Parlow, E. Vertical structure of selected turbulence characteristics above an urban canopy. Theor. Appl. Climatol. 1999, 62, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Feigenwinter, C.; Vogt, R. Detection and analysis of coherent structures in urban turbulence. Theor. Appl. Climatol. 2005, 81, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Moriwaki, R.; Kanda, M. Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Bound.- Layer Meteorol. 2006, 120, 163–179. [Google Scholar] [CrossRef]
- Wood, C.R.; Lacser, A.; Barlow, J.F.; Padhra, A.; Belcher, S.E.; Nemitz, E.; Helfter, C.; Famulari, D.; Grimmond, C.S.B. Turbulent Flow at 190 m Height Above London During 2006-2008: A Climatology and the Applicability of Similarity Theory. Bound.-Layer Meteorol. 2010, 137, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, D.; Gao, Z.; Sun, T.; Guo, X.; Bou-Zeid, E. Turbulent Transport of Momentum and Scalars Above an Urban Canopy. Bound.-Layer Meteorol. 2014, 150, 485–511. [Google Scholar] [CrossRef]
- Schmutz, M.; Vogt, R.; Feigenwinter, C.; Parlow, E. Ten years of eddy covariance measurements in Basel, Switzerland: Seasonal and interannual variabilities of urban CO2 mole fraction and flux. J. Geophys. Res. 2016, 121, 8649–8667. [Google Scholar] [CrossRef] [Green Version]
- Lee, X.; Yu, Q.; Sun, X.; Liu, J.; Min, Q.; Liu, Y.; Zhang, X. Micrometeorological fluxes under the influence of regional and local advection: A revisit. Agric. For. Meteorol. 2004, 122, 111–124. [Google Scholar] [CrossRef]
- Assouline, S.; Tyler, S.W.; Tanny, J.; Cohen, S.; Bou-Zeid, E.; Parlange, M.B.; Katul, G.G. Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis. Adv. Water Resour. 2008, 31, 160–172. [Google Scholar] [CrossRef]
- Sempreviva, A.M.; Højstrup, J. Transport of temperature and humidity variance and covariance in the marine surface layer. Bound.-Layer Meteorol. 1998, 87, 233–253. [Google Scholar] [CrossRef]
- De Bruin, H.A.R.; Van Den Hurk, B.J.J.M.; Kroon, L.J.M. On the temperature-humidity correlation and similarity. Bound.-Layer Meteorol. 1999, 93, 453–468. [Google Scholar] [CrossRef]
- Williams, C.A.; Scanlon, T.M.; Albertson, J.D. Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Bound.-Layer Meteorol. 2007, 122, 149–165. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Liu, H.; Peters, G.; Foken, T. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer. Bound.-Layer Meteorol. 2001, 100, 459–468. [Google Scholar] [CrossRef]
- Foken, T.; Gockede, M.; Mauder, M.; Mahrt, L.; Amiro, B.; Munger, W. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis: Chapter 9: Post-Field Data Quality Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Chowdhuri, S.; Prabha, T.V. An evaluation of the dissimilarity in heat and momentum transport through quadrant analysis for an unstable atmospheric surface layer flow. Environ. Fluid Mech. 2019, 19, 513–542. [Google Scholar] [CrossRef]
- Ong, L.; Wallace, J.M. Joint probability density analysis of the structure and dynamics of the vorticity field of a turbulent boundary layer. J. Fluid Mech. 1998, 367, 291–328. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. Dissipation of Energy in the Locally Isotropic Turbulence (English translation by V. Levin, 1991). Proc. R. Soc. A Math. Phys. Eng. Sci. 1941, 434, 15–17. [Google Scholar]
- Finnigan, J.J. Turbulence in Waving Wheat: I. Mean Statistics and Honami. Bound.-Layer Meteorol. 1979, 16, 181–211. [Google Scholar] [CrossRef]
- Paw, U.K.T.; Brunet, Y.; Collineau, S.; Shaw, R.H.; Maitani, T.; Qiu, J.; Hipps, L. On coherent structures in turbulence above and within agricultural plant canopies. Agric. For. Meteorol. 1992, 61, 55–68. [Google Scholar] [CrossRef]
- Katul, G.; Poggi, D.; Cava, D.; Finnigan, J. The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Bound.-Layer Meteorol. 2006, 120, 367–375. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, B.; Lan, C.; Fang, R.; Zheng, B.; Lu, J.; Zheng, D. Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport. Atmosphere 2022, 13, 489. https://doi.org/10.3390/atmos13030489
Wang Y, Wang B, Lan C, Fang R, Zheng B, Lu J, Zheng D. Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport. Atmosphere. 2022; 13(3):489. https://doi.org/10.3390/atmos13030489
Chicago/Turabian StyleWang, Ye, Baomin Wang, Changxing Lan, Renzhi Fang, Baofeng Zheng, Jieying Lu, and Dan Zheng. 2022. "Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport" Atmosphere 13, no. 3: 489. https://doi.org/10.3390/atmos13030489
APA StyleWang, Y., Wang, B., Lan, C., Fang, R., Zheng, B., Lu, J., & Zheng, D. (2022). Improved Quadrant Analysis for Large-Scale Events Detection in Turbulent Transport. Atmosphere, 13(3), 489. https://doi.org/10.3390/atmos13030489