Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Examined Wildfires
ID | Region | Ignition Date & Time (UTC) | Ignition Location (°N, °E) | Burnt Area (ha) | Pyroconvection Date & Time (UTC) |
---|---|---|---|---|---|
EMSR527a | Attica | 3 August 2021 10:22 | 38.1317, 23.8044 | 8454 | 3 August 2021 12:10 |
EMSR527b | Euboea | 3 August 2021 14:09 | 38.7940, 23.3242 | 51,245 | 3 August 2021 15:05 |
EMSR528 | Elis | 4 August 2021 10:03 | 37.7016, 21.5747 | 18,400 | 4 August 2021 13:00 |
EMSR531 | Laconia | 3 August 2021 10:30 | 36.8472, 22.3885 | 11,209 | 5 August 2021 12:30 |
EMSR532 | Messenia | 4 August 2021 16:51 | 37.3251, 21.9410 | 4688 | 5 August 2021 11:35 |
2.2. Observational Data
Wildfire ID | AWS Name | AWS Location (°N, °E) | AWS Elevation (m) | Data Record |
---|---|---|---|---|
AWS Group 1 | ||||
EMSR527a | Athens | 37.97841, 23.71545 | 50 | 23 July 2008-today |
EMSR527b | Skopelos | 39.12172, 23.72651 | 60 | 26 November 2007-today |
EMSR528 | Pyrgos | 37.66944, 21.43806 | 22 | 4 May 2007-today |
EMSR531 | Sparti | 37.05358, 22.43763 | 204 | 18 January 2009-today |
EMSR532 | Megalopoli | 37.40182, 22.14159 | 432 | 13 May 2009-today |
AWS Group 2 | ||||
EMSR527a | Tatoi | 38.12116, 23.79494 | 282 | 5 November 2014-today |
EMSR527b | Vateri | 38.77408, 23.31334 | 130 | 12 October 2016-today |
EMSR528 | Oleni | 37.72500, 21.53700 | 61 | 16 January 2008-today |
EMSR531 | Krokees | 36.88361, 22.56056 | 241 | 27 January 2020-today |
EMSR532 | Arfara | 37.15589, 22.04557 | 96 | 25 October 2012-today |
2.3. Model Data
3. Results
3.1. Evolution of Events from Satellite Observations
3.2. Antecedent Conditions and Fuels
3.3. Surface Fire Weather Evolution
3.4. Synoptic Conditions during the Extreme Wildfires
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duane, A.; Castellnou, M.; Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfires. Clim. Chang. 2021, 165, 43. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M.S. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 2017, 1, 0058. [Google Scholar] [CrossRef] [PubMed]
- Finney, M.; McAllister, S.; Grumstrup, T.; Forhofer, J. Wildland Fire Behavior—Dynamics, Principles, and Processes, 1st ed.; CSIRO Publishing: Melbourne, Australia, 2021; pp. 461–462. [Google Scholar]
- International Cloud Atlas. Available online: https://cloudatlas.wmo.int/en/flammagenitus.html (accessed on 18 November 2021).
- Lareau, N.P.; Clements, C.B. Environmental controls on pyrocumulus and pyrocumulonimbus initiation and development. Atmos. Chem. Phys. 2016, 16, 4005–4022. [Google Scholar] [CrossRef] [Green Version]
- Potter, B.E. Atmospheric interactions with wildland fire behavior—II. Plume and vortex dynamics. Int. J. Wildland Fire 2012, 21, 802–817. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus lightning and fire ignition on Black Saturday in southeast Australia. J. Geophys. Res.-Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Thurston, W.; Keppert, J.D.; Tory, K.J.; Fawcett, R.J.B. The contribution of turbulent plume dynamics to long-range spotting. Int. J. Wildland Fire 2017, 26, 317–330. [Google Scholar] [CrossRef]
- Fromm, M.; Bevilacqua, R.; Servranckx, R.; Josen, J.; Thayer, J.P.; Herman, J.; Larko, D. Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998. J. Geophys. Res.-Atmos. 2005, 110, D08205. [Google Scholar]
- Fromm, M.; Torres, A.; Diner, D.; Lindsey, D.; Vant Hull, B.; Servranckx, R.; Shettle, E.P.; Li, Z. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective. J. Geophys. Res.-Atmos. 2008, 113, D08202. [Google Scholar] [CrossRef] [Green Version]
- Fromm, M.; Shettle, E.P.; Fricke, K.H.; Ritter, C.; Trickl, T.; Giehl, H.; Gerding, M.; Barnes, J.E.; O’Neill, M.; Massie, S.T.; et al. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 2. Vertical profile perspective. J. Geophys. Res.-Atmos. 2008, 113, D08203. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Fromm, M.; Trentmann, J.; Luderer, G.; Andreae, M.O.; Servranckx, R. The Chisholm firestorm: Observed microstructure, precipitation, and lightning activity of a pyro-cumulonimbus. Atmos. Chem. Phys. 2007, 7, 645–659. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A. Cloud-to-ground lightning downwind of the 2002 Hayman forest fire in Colorado. Geophys. Res. Lett. 2006, 33, L03803. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A.; Dolan, B.; Krehbiel, P.; Rison, W.; Lindsey, D.T. Lightning in wildfire smoke plumes observed in Colorado during summer 2002. Mon. Weather Rev. 2014, 142, 489–507. [Google Scholar] [CrossRef] [Green Version]
- Bakhshaii, A.; Johnson, E.A.; Nayebi, K. Wildfire pyroconvection and CAPE: Buoyancy’s drying and atmospheric intensification—Fort McMurray. Atmosphere 2020, 11, 763. [Google Scholar] [CrossRef]
- Peterson, D.A.; Hyer, E.J.; Campbell, J.R. A conceptual model for development of intense pyrocumulonimbus in western North America. Mon. Weather Rev. 2017, 145, 2235–2255. [Google Scholar] [CrossRef]
- Luderer, G.; Trentmann, J.; Winterrath, T.; Textor, C.; Herzog, M.; Graf, H.F.; Andreae, M.O. Modeling of biomass smoke injection into the lower stratosphere by a large forest fire (Part II): Sensitivity studies. Atmos. Chem. Phys. 2006, 6, 5261–5277. [Google Scholar] [CrossRef] [Green Version]
- Luderer, G.; Trentmann, J.; Andreae, M.O. A new look at the role of fire-released moisture on the dynamics of atmospheric pyroconvection. Int. J. Wildland Fire 2009, 18, 554–562. [Google Scholar] [CrossRef]
- Peterson, D.A.; Hyer, E.J.; Campbell, J.R.; Fromm, M.D.; Hair, J.W.; Butler, C.F.; Fenn, M.A. The 2013 Rim fire—Implications for predicting extreme fire spread, pyroconvection, and smoke emissions. Bull. Am. Meteorol. Soc. 2015, 96, 229–247. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Barros, A.M.G.; Pinto, A.; Santos, J.A. Characteristics and controls of extremely large wildfires in the western Mediterranean basin. J. Geophys. Res.-Biogeo. 2016, 121, 2141–2157. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Boer, M.M.; Nolan, R.H.; Resco De Dios, V.; Clarke, H.; Price, O.F.; Bradstock, R.A. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Future 2017, 5, 1196–1202. [Google Scholar] [CrossRef]
- Giannaros, T.M.; Kotroni, V.; Lagouvardos, K. IRIS—Rapid response fire spread forecasting system: Development, calibration, and evaluation. Agric. For. Meteorol. 2019, 279, 107745. [Google Scholar] [CrossRef]
- Copernicus Emergency Management Service. Available online: https://emergency.copernicus.eu/mapping/list-of-activations-rapid (accessed on 27 November 2021).
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and structure of the Canadian Forest Fire Weather Index System. In Forestry Technical Report; Canadian Forestry Service Headquarters: Ottawa, ON, Canada, 1987. [Google Scholar]
- Dragozi, E.; Giannaros, T.M.; Kotroni, V.; Lagouvardos, K.; Koletsis, I. Dead fuel moisture content (DFMC) estimation using MODIS and meteorological data: The case of Greece. Remote Sens. 2021, 13, 4224. [Google Scholar] [CrossRef]
- Land Surface Analysis Satellite Applications Facility (LSA SAF). Available online: https://www.eumetsat.int/lsa-saf (accessed on 30 November 2021).
- Roberts, G.; Wooster, M.J.; Xu, W.; Freeborn, P.H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jianping, H.; Fisher, D.; Kaiser, J.W. LSA SAF Meteosat FRP products—Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring System (CAMS). Atmos. Chem. Phys. 2015, 15, 13241–13267. [Google Scholar] [CrossRef] [Green Version]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Perry, G.L.W.; Drake, N.; Rebelo, L.M.; Dipotso, F. Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. J. Geophys. Res.-Atmos. 2005, 110, D21111. [Google Scholar] [CrossRef] [Green Version]
- Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 2950–2962. [Google Scholar] [CrossRef]
- Heward, H.; Smith, A.M.S.; Roy, D.P.; Tinkham, W.T.; Hoffman, C.M.; Morgan, P.; Lannom, K.O. Is burn severity related to fire intensity? Observations from landscape scale remote sensing. Int. J. Wildland Fire 2013, 22, 910–918. [Google Scholar] [CrossRef]
- Spanos, K.A.; Skouteri, A.; Gaitanis, D.; Petrakis, P.V.; Meliadis, I.; Michopoulos, P.; Solomou, A.; Koulelis, P.; Avramidou, E.V. Forests of Greece, their multiple functions and uses, sustainable management and biodiversity conservation in the face of climate change. Open J. Ecol. 2021, 11, 374–406. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Ager, A.A.; Galatsidas, S.; Papalampros, L.; Day, M.A. Spatial optimization and tradeoffs of alternative forest management scenarios in Macedonia, Greece. Forests 2021, 12, 697. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannaros, T.M.; Papavasileiou, G.; Lagouvardos, K.; Kotroni, V.; Dafis, S.; Karagiannidis, A.; Dragozi, E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere 2022, 13, 475. https://doi.org/10.3390/atmos13030475
Giannaros TM, Papavasileiou G, Lagouvardos K, Kotroni V, Dafis S, Karagiannidis A, Dragozi E. Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere. 2022; 13(3):475. https://doi.org/10.3390/atmos13030475
Chicago/Turabian StyleGiannaros, Theodore M., Georgios Papavasileiou, Konstantinos Lagouvardos, Vassiliki Kotroni, Stavros Dafis, Athanasios Karagiannidis, and Eleni Dragozi. 2022. "Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection" Atmosphere 13, no. 3: 475. https://doi.org/10.3390/atmos13030475
APA StyleGiannaros, T. M., Papavasileiou, G., Lagouvardos, K., Kotroni, V., Dafis, S., Karagiannidis, A., & Dragozi, E. (2022). Meteorological Analysis of the 2021 Extreme Wildfires in Greece: Lessons Learned and Implications for Early Warning of the Potential for Pyroconvection. Atmosphere, 13(3), 475. https://doi.org/10.3390/atmos13030475