A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. The Overview of the Weather Process
3.1. The Observed Precipitation
3.2. Occurrence and Development of MCC
4. Numerical Simulation Diagnostic Analysis
4.1. Precipitation Simulation Results
4.2. The Development of MCC
5. MCC Occurrence and Development Mechanism
5.1. Diagnostic Analysis of Vorticity Equation
5.2. Positive Feedback of Convective Latent Heat Release
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.S.; Li, Y.; Cheng, Z.Q. An overview of research and forecasting on rainfall associated with landfalling tropical cyclones. Adv. Atmos. Sci. 2010, 27, 967–976. [Google Scholar] [CrossRef]
- Peduzzi, P.; Chatenoux, B.; Dao, Q.-H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Chang. 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W.; Shun, C.M.; Lee, T.C. Change in Destructiveness of Landfalling Tropical Cyclones over China in Recent Decades. J. Clim. 2017, 30, 3367–3379. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Tippett, M.K.; Sobel, A.H.; Camargo, S.J. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat. Commun. 2016, 7, 10625. [Google Scholar] [CrossRef]
- Cangialosi, J.P.; Latto, A.S.; Berg, R. Hurricane Irma. National Hurricane Center Tropical Cyclone Rep. 2018. Available online: www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (accessed on 18 January 2022).
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113, NCAR Tech. Note TN-4751STR.
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Booth, J.F.; Naud, C.M.; Willison, J. Evaluation of Extratropical Cyclone Precipitation in the North Atlantic Basin: An Analysis of ERA-Interim, WRF, and Two CMIP5 Models. J. Clim. 2018, 31, 2345–2360. [Google Scholar] [CrossRef] [PubMed]
- Lamraoui, F.; Booth, J.F.; Naud, C.M. WRF Hindcasts of Cold Front Passages over the ARM Eastern North At-lantic Site: A Sensitivity Study. Mon. Weather Rev. 2018, 146, 2417–2432. [Google Scholar] [CrossRef]
- Squitieri, B.J.; Gallus, W.A. WRF Forecasts of Great Plains Nocturnal Low-Level Jet-Driven MCSs. Part I: Correlation between Low-Level Jet Forecast Accuracy and MCS Precipitation Forecast Skill. Weather Forecast. 2016, 31, 1301–1323. [Google Scholar] [CrossRef]
- Letson, F.; Shepherd, T.J.; Barthelmie, R.J.; Pryor, S.C. WRF Modeling of Deep Convection and Hail for Wind Power Applications. J. Appl. Meteorol. Clim. 2020, 59, 1717–1733. [Google Scholar] [CrossRef]
- Sun, J.; He, H.; Hu, X.; Wang, D.; Gao, C.; Song, J. Numerical Simulations of Typhoon Hagupit (2008) Using WRF. Weather Forecast. 2019, 34, 999–1015. [Google Scholar] [CrossRef]
- Peace, M.; Mattner, T.; Mills, G.; Kepert, J.; McCaw, L. Coupled Fire—Atmosphere Simulations of the Rocky River Fire Using WRF-SFIRE. J. Appl. Meteorol. Clim. 2016, 55, 1151–1168. [Google Scholar] [CrossRef]
- Archer, C.L.; Wu, S.; Ma, Y.; Jiménez, P.A. Two Corrections for Turbulent Kinetic Energy Generated by Wind Farms in the WRF Model. Mon. Weather Rev. 2020, 148, 4823–4835. [Google Scholar] [CrossRef]
- Strobach, E.; Bel, G. Regional Decadal Climate Predictions Using an Ensemble of WRF Parameterizations Driven by the MIROC5 GCM. J. Appl. Meteorol. Clim. 2019, 58, 527–549. [Google Scholar] [CrossRef]
- Jing, X.; Xue, L.; Yin, Y.; Yang, J.; Steinhoff, D.F.; Monaghan, A.; Yates, D.; Liu, C.; Rasmussen, R.; Taraphdar, S.; et al. Convection-Permitting Regional Climate Simulations in the Arabian Gulf Region Using WRF Driven by Bias-Corrected GCM Data. J. Clim. 2020, 33, 7787–7815. [Google Scholar] [CrossRef]
- Kowaleski, A.M.; Morss, R.E.; Ahijevych, D.; Fossell, K.R. Using a WRF-ADCIRC Ensemble and Track Clustering to Investigate Storm Surge Hazards and Inundation Scenarios Associated with Hurricane Irma. Weather Forecast. 2020, 35, 1289–1315. [Google Scholar] [CrossRef]
- Piersante, J.O.; Schumacher, R.S.; Rasmussen, K.L. Comparison of Biases in Warm-Season WRF Forecasts in North and South America. Weather Forecast. 2021, 36, 979–1001. [Google Scholar] [CrossRef]
- Pal, S.; Dominguez, F.; Dillon, M.E.; Alvarez, J.; Garcia, C.M.; Nesbitt, S.W.; Gochis, D. Hydrometeorological Observations and Modeling of an Extreme Rainfall Event Using WRF and WRF-Hydro during the RELAMPAGO Field Campaign in Argentina. J. Hydrometeorol. 2021, 22, 331–351. [Google Scholar] [CrossRef]
- Wu, C.-C.; Chen, S.-G.; Lin, S.-C.; Yen, T.-H.; Chen, T.-C. Uncertainty and Predictability of Tropical Cyclone Rainfall Based on Ensemble Simulations of Typhoon Sinlaku (2008). Mon. Weather Rev. 2013, 141, 3517–3538. [Google Scholar] [CrossRef]
- Li, R.C.Y.; Zhou, W. Interdecadal Changes in Summertime Tropical Cyclone Precipitation over Southeast China during 1960–2009. J. Clim. 2015, 28, 1494–1509. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Wu, C.-C.; Wang, Y. The Influence of Island Topography on Typhoon Track Deflection. Mon. Weather Rev. 2011, 139, 1708–1727. [Google Scholar] [CrossRef]
- Chen, T.-C.; Wu, C.-C. The Remote Effect of Typhoon Megi (2010) on the Heavy Rainfall over Northeastern Taiwan. Mon. Weather Rev. 2016, 144, 3109–3131. [Google Scholar] [CrossRef]
- Chen, L.S.; Meng, Z.Y.; Cong, C.H. An overview on the research of typhoon rainfall distribution. J. Mar. Meteor. 2017, 37, 1–7. (In Chinese) [Google Scholar]
- Wang, Y.; Wang, Y.; Fudeyasu, H. The Role of Typhoon Songda (2004) in Producing Distantly Located Heavy Rainfall in Japan. Mon. Weather Rev. 2009, 137, 3699–3716. [Google Scholar] [CrossRef]
- Lonfat, M.; Rogers, R.; Marchok, T.; Marks, F. A Parametric Model for Predicting Hurricane Rainfall. Mon. Weather Rev. 2007, 135, 3086–3097. [Google Scholar] [CrossRef]
- Kimball, S.K. Structure and Evolution of Rainfall in Numerically Simulated Landfalling Hurricanes. Mon. Weather Rev. 2008, 136, 3822–3847. [Google Scholar] [CrossRef]
- Yokoyama, C.; Takayabu, Y.N. A Statistical Study on Rain Characteristics of Tropical Cyclones Using TRMM Satellite Data. Mon. Weather Rev. 2008, 136, 3848–3862. [Google Scholar] [CrossRef] [Green Version]
- Meng, Z.; Zhang, Y. On the Squall Lines Preceding Landfalling Tropical Cyclones in China. Mon. Weather Rev. 2012, 140, 445–470. [Google Scholar] [CrossRef]
- Ross, R.J.; Kurihara, Y. A Numerical Study on Influences of Hurricane Gloria (1985) on the Environment. Mon. Weather Rev. 1995, 123, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B.; Schafer, P.; Kirshbaum, D.; Regina, E. Orographic Enhancement of Precipitation inside Hurricane Dean. J. Hydrometeorol. 2009, 10, 820–831. [Google Scholar] [CrossRef]
- Jorgensen, D.P. Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General observa-tions by research aircraft. J. Atmos. Sci. 1984, 41, 1268–1286. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, D.P. Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci. 1984, 41, 1287–1311. [Google Scholar] [CrossRef]
- Marks, F.D., Jr. Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Weather Rev. 1985, 113, 909–930. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.S. Causes of the torrential rainfalls associated with landfalling typhoons (in Chinese). Meteor Mon. 1977, 3, 10–13. [Google Scholar]
- Li, Y.; Chen, L.S.; Qian, C.H.; Yang, J.K. A study of the formation and development of a mesoscale convergence line within Typhoon Rananim (0414). Acta. Meteor. Sin. 2010, 68, 640–651. (In Chinese) [Google Scholar]
- Bartels, D.L.; Maddox, R.A. Midlevel cyclonic vortices generated by mesoscale convective systems. Mon. Weather Rev. 1991, 119, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Zehr, R.M. Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 1992, 61, 181. [Google Scholar]
- Montgomery, M.T.; Nicholls, M.E.; Cram, T.; Saunders, A.B. A Vortical Hot Tower Route to Tropical Cyclogenesis. J. Atmos. Sci. 2006, 63, 355–386. [Google Scholar] [CrossRef] [Green Version]
- Hendricks, E.A.; Montgomery, M.T. Rapid Scan Views of Convectively Generated Mesovortices in Sheared Tropical Cyclone Gustav (2002). Weather Forecast. 2006, 21, 1041–1050. [Google Scholar] [CrossRef] [Green Version]
- Tory, K.J.; Montgomery, M.T.; Davidson, N.E. Prediction and Diagnosis of Tropical Cyclone Formation in an NWP System. Part I: The Critical Role of Vortex Enhancement in Deep Convection. J. Atmos. Sci. 2006, 63, 3077–3090. [Google Scholar] [CrossRef] [Green Version]
- Tory, K.J.; Montgomery, M.T.; Davidson, N.E.; Kepert, J.D. Prediction and Diagnosis of Tropical Cyclone Formation in an NWP System. Part II: A Diagnosis of Tropical Cyclone Chris Formation. J. Atmos. Sci. 2006, 63, 3091–3113. [Google Scholar] [CrossRef] [Green Version]
- 4China net, 2021. The Top Ten Natural Disasters in 2020 are Announced, and the Typhoon “Hagupit” Is Listed. China.com. Available online: https://news.china.com/domestic/945/20210102/39140848_all.html (accessed on 18 June 2021).
- Shen, S.Q.; Yu, B.; Zhang, J.F.; Li, X. The climate features of tropical cyclone heavy rain and falling area forecast in East China. Meteor. Mon. 1996, 22, 33–37. (In Chinese) [Google Scholar]
- Maddox, R.A. Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev. 1983, 111, 1475–1493. [Google Scholar] [CrossRef] [Green Version]
- Maddox, R.A.; Howard, K.W.; Bartels, D.L.; Rodgers, D.M. Mesoscale Convective Complexes in the Middle Latitudes; American Meteorological Society: Boston, MA, USA, 1986; pp. 390–413. [Google Scholar] [CrossRef]
- Hertenstein, R.F.A.; Schubert, W.H. Potential Vorticity Anomalies Associated with Squall Lines. Mon. Weather Rev. 1991, 119, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.S.; Frank, W.M. A Numerical Study of the Genesis of Extratropical Convective Mesovortices. Part I: Evolution and Dynamics. J. Atmos. Sci. 1993, 50, 2401–2426. [Google Scholar] [CrossRef] [Green Version]
- Bister, M.; Emanuel, K.A. The Genesis of Hurricane Guillermo: TEXMEX Analyses and a Modeling Study. Mon. Weather Rev. 1997, 125, 2662–2682. [Google Scholar] [CrossRef]
- Raymond, D.J.; Sessions, S.L.; Carrillo, C.L. Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res. Earth Surf. 2011, 116. D18101. [Google Scholar] [CrossRef] [Green Version]
- Raymond, D.J.; Gjorgjievska, S.; Sessions, S.; Fuchs, K. Tropical cyclogenesis and mid-level vorticity. Aust. Meteor. Oceanogr. Soc. J. 2014, 64, 11–25. [Google Scholar] [CrossRef]
- Bell, M.M.; Montgomery, M.T. Mesoscale Processes during the Genesis of Hurricane Karl (2010). J. Atmos. Sci. 2019, 76, 2235–2255. [Google Scholar] [CrossRef]
- Kilroy, G.; Smith, R.K. A numerical study of rotating convection during tropical cyclogenesis. Q. J. R. Meteorol. Soc. 2012, 139, 1255–1269. [Google Scholar] [CrossRef]
- Ye, C.Z.; Pan, Z.X.; Cheng, R.; Xu, A.H. The numerical research of the primary mechanism of the offing rein-forcement of typhoon Rananim based on AREM. Acta. Meteor. Sinica. 2007, 65, 208–220. (In Chinese) [Google Scholar]
- Verlinde, J.; Cotton, W.R. A Mesoscale Vortex Couplet Observed in the Trailing Anvil of a Multicellular Convective Complex. Mon. Weather Rev. 1990, 118, 993–1010. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. Role of Cumulus Congestus in Tropical Cyclone Formation in a High-Resolution Numerical Model Simulation. J. Atmos. Sci. 2014, 71, 1681–1700. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Chu, H.; Sun, J.; Zhao, W.; Meng, Q. A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon. Atmosphere 2022, 13, 473. https://doi.org/10.3390/atmos13030473
Liu X, Chu H, Sun J, Zhao W, Meng Q. A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon. Atmosphere. 2022; 13(3):473. https://doi.org/10.3390/atmos13030473
Chicago/Turabian StyleLiu, Xiaobo, Hai Chu, Jun Sun, Wei Zhao, and Qingtao Meng. 2022. "A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon" Atmosphere 13, no. 3: 473. https://doi.org/10.3390/atmos13030473
APA StyleLiu, X., Chu, H., Sun, J., Zhao, W., & Meng, Q. (2022). A Numerical Simulation of the Development Process of a Mesoscale Convection Complex Causing Severe Rainstorm in the Yangtze River Delta Region behind a Northward Moving Typhoon. Atmosphere, 13(3), 473. https://doi.org/10.3390/atmos13030473