Effects of Land Cover Changes on Compound Extremes over West Africa Using the Regional Climate Model RegCM4
Abstract
:1. Introduction
2. Data and Methods
2.1. RegCM Simulations
2.2. Definition of Compound Extremes
3. Results and Discussion
3.1. Impact of Reforestation on the Rainfall and Temperature Extremes over West Africa
3.2. Impact of Reforestation on Compound Extremes over West Africa
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. Climate Change, 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bexm, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Klutse, N.A.B.; Sylla, M.B.; Diallo, I.; Sarr, A.; Dosio, A.; Diedhiou, A.; Kamga, A.; Lamptey, B.; Ali, A.; Gbobaniyi, E.O.; et al. Daily characteristics of West African monsoon rainfall in CORDEX regional climate models. Theor. Appl. Climatol. 2015, 123, 369–386. [Google Scholar] [CrossRef]
- Bichet, A.; Diedhiou, A. West African Sahel has become wetter during the last 30 years, but dry spells are shorter and more frequent. Clim. Res. 2018, 75, 155–162. [Google Scholar] [CrossRef] [Green Version]
- Lamptey, B. An analytical framework for estimating the urban effect on climate. Int. J. Clim. 2009, 30, 72–88. [Google Scholar] [CrossRef]
- Dinku, T.; Ceccato, P.; Grover-Kopec, E.; Lemma, M.; Connor, S.J.; Ropelewski, C.F. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens. 2007, 8, 1503–1526. [Google Scholar] [CrossRef]
- Hountondji, Y.C.H. Dynamique Environnementale en Zones Sahélienne et Soudanienne de l’Afrique de l’Ouest: Analyse des Modifications et Evaluation de la Dégradation du Couvert Végétal. Ph.D. Thesis, Faculté des Sciences, Université de Liège, Liège, Belgium, 2008. [Google Scholar]
- Avakoudjo, J.; Mama, A.; Toko, I.; Kindomihou, V.; Sinsin, B. Dynamique de l’occupation du sol dans le Parc National du W et sa périphérie au nord-ouest du Bénin. Int. J. Biol. Chem. Sci. 2014, 8, 2608–2625. [Google Scholar] [CrossRef] [Green Version]
- Zoungrana, B.J.B. Vegetation Dynamics in the Southwest of Burkina Faso in Response to Rainfall Variability and Land Use. Ph.D. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2016. [Google Scholar]
- Bene, A.; Fournier, A. Végétation naturelle et occupation des terres au Burkina Faso (Afrique de l’ouest). Cinq décennies de changement dans un terroir du pays sèmè. In Regards Scientifiques Croisés sur le Chan-Gement Global et le Développement–Langue, Environnement, Culture; Actes du Colloque International de Ouagadougou (8–10 March 2012); Fabre, G., Fournier, A., Sanogo, L., Eds.; 2014; pp. 143–164. Available online: https://halshs.archives-ouvertes.fr/LEC-OUAGA-2012/public/lec-ouaga-2012.pdf (accessed on 10 January 2022).
- Ozer, P.; Hountondji, Y.C.; Niang, A.J.; Karimoune, S.; Laminou, M.O.; Salmon, M. Désertification au sahel: Historique et perspectives. BSGLg 2010, 54, 69–84. [Google Scholar]
- Xue, Y.; Shukla, J. The Influence of Land Surface Properties on Sahel Climate. Part I: Desertification. J. Clim. 1993, 6, 2232–2245. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Shukla, J. The Influence of Land Surface Properties on Sahel Climate. Part II. Afforestation. J. Clim. 1996, 9, 3260–3275. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Eltahir, E.A.B. The Role of Vegetation in the Dynamics of West African Monsoons. J. Clim. 1998, 11, 2078–2096. [Google Scholar] [CrossRef]
- Wang, G.; Eltahir, E.A.B. Role of vegetation dynamics in enhancing the low-frequency variability of the Sahel rainfall. Water Resour. Res. 2000, 36, 1013–1021. [Google Scholar] [CrossRef] [Green Version]
- Alo, C.A.; Wang, G. Role of vegetation dynamics in regional climate predictions over western Africa. Clim. Dyn. 2010, 35, 907–922. [Google Scholar] [CrossRef]
- Wang, G.; Alo, C.A. Changes in Precipitation Seasonality in West Africa Predicted by RegCM3 and the Impact of Dynamic Vegetation Feedback. Int. J. Geophys. 2011, 2012, 597205. [Google Scholar] [CrossRef] [Green Version]
- Abiodun, B.J.; Adeyewa, Z.D.; Oguntunde, P.; Salami, A.; Ajayi, V.O. Modeling the impacts of reforestation on future climate in West Africa. Theor. Appl. Climatol. 2012, 110, 77–96. [Google Scholar] [CrossRef]
- Zaroug, M.A.H.; Sylla, M.B.; Giorgi, F.; Eltahir, E.A.B.; Aggarwal, P.K. A sensitivity study on the role of the swamps of southern Sudan in the summer climate of North Africa using a regional climate model. Theor. Appl. Climatol. 2013, 113, 63–81. [Google Scholar] [CrossRef] [Green Version]
- Diba, I.; Camara, M.; Sarr, A.B. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intraseasonal Variability and Extreme Precipitation Events. Adv. Meteorol. 2016, 2016, 3262451. [Google Scholar] [CrossRef]
- Diasso, U.; Abiodun, B.J. Future impacts of global warming and reforestation on drought patterns over West Africa. Theor. Appl. Climatol. 2017, 133, 647–662. [Google Scholar] [CrossRef]
- Odoulami, R.C.; Abiodun, B.J.; Ajayi, A.E.; Diasso, U.J.; Saley, M.M. Potential impacts of forestation on heat waves over West Africa in the future. Ecol. Eng. 2017, 102, 546–556. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Sarr, A.B.; Diedhiou, A. Potential Impacts of Land Cover Change on the Interannual Variability of Rainfall and Surface Temperature over West Africa. Atmosphere 2018, 9, 376. [Google Scholar] [CrossRef] [Green Version]
- Bamba, A.; Diallo, I.; Toure, N.E.; Kouadio, K.; Konaré, A.; Dramé, M.S.; Diedhiou, A.; Silué, S.; Doumbia, M.; Tall, M. Effect of the African greenbelt position on West African summer climate: A regional climate modeling study. Theor. Appl. Climatol. 2018, 137, 309–322. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M.; Diedhiou, A. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intra-Annual Variability and Extreme Temperature Events. Atmospheric Clim. Sci. 2019, 9, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; A Special Report of Working Groups I And II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Leonard, M.; Westra, S.; Phatak, A.; Lambert, M.; Hurk, B.V.D.; McInnes, K.; Risbey, J.; Schuster, S.; Jakob, D.; Stafford-Smith, M. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 113–128. [Google Scholar] [CrossRef]
- McPhillips, L.E.; Chang, H.; Chester, M.V.; Depietri, Y.; Friedman, E.; Grimm, N.B.; Kominoski, J.S.; McPhearson, T.; Méndez-Lázaro, P.; Rosi, E.J.; et al. Defining Extreme Events: A Cross-Disciplinary Review. Earth’s Future 2018, 6, 441–455. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Hao, F. Compound Extremes in Hydroclimatology: A Review. Water 2018, 10, 718. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, Z. Likelihood of concurrent climate extremes and variations over China. Environ. Res. Lett. 2018, 13, 094023. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Fischer, E.M. The record-breaking compound hot and dry 2018 growing season in Germany. Weather Clim. Extremes 2020, 29, 100270. [Google Scholar] [CrossRef]
- Lyon, B. Southern Africa Summer Drought and Heat Waves: Observations and Coupled Model Behavior. J. Clim. 2009, 22, 6033–6046. [Google Scholar] [CrossRef]
- Albright, T.P.; Pidgeon, A.M.; Rittenhouse, C.D.; Clayton, M.K.; Wardlow, B.D.; Flather, C.H.; Culbert, P.D.; Radeloff, V.C. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 2010, 1, 1–22. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A.; Phillips, T.J. Changes in concurrent monthly precipitation and temperature extremes. Environ. Res. Lett. 2013, 8, 034014. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A Review of Recent Advances in Research on Extreme Heat Events. Curr. Clim. Chang. Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- Orth, R.; Zscheischler, J.; Seneviratne, S.I. Record dry summer in 2015 challenges precipitation projections in central Europe. Sci. Rep. 2016, 6, 28334. [Google Scholar] [CrossRef] [PubMed]
- Sedlmeier, K.; Feldmann, H.; Schädler, G. Compound summer temperature and precipitation extremes over central Europe. Theor. Appl. Climatol. 2018, 131, 1493–1501. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ. 2019, 663, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Livneh, B.; Hoerling, M.P. The Physics of Drought in the U.S. Central Great Plains. J. Clim. 2016, 29, 6783–6804. [Google Scholar] [CrossRef]
- Feng, S.; Wu, X.; Hao, Z.; Hao, Y.; Zhang, X.; Hao, F. A database for characteristics and variations of global compound dry and hot events. Weather Clim. Extrem. 2020, 30, 100299. [Google Scholar] [CrossRef]
- Olmo, M.; Bettolli, M.L.; Rusticucci, M. Atmospheric circulation influence on temperature and precipitation individual and compound daily extreme events: Spatial variability and trends over southern South America. Weather Clim. Extrem. 2020, 29, 100267. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. Changes in compound drought and hot extreme events in summer over populated eastern China. Weather Clim. Extrem. 2020, 30, 100295. [Google Scholar] [CrossRef]
- Vogel, J.; Paton, E.; Aich, V.; Bronstert, A. Increasing compound warm spells and droughts in the Mediterranean Basin. Weather Clim. Extrem. 2021, 32, 100312. [Google Scholar] [CrossRef]
- Beniston, M. Trends in joint quantiles of temperature and precipitation in Europe since 1901 and projected for 2100. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Sillmann, J.; Sippel, S.; Russo, S. Climate Extremes and Their Implications for Impact and Risk Assessment; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Martius, O.; Pfahl, S.; Chevalier, C. A global quantification of compound precipitation and wind extremes. Geophys. Res. Lett. 2016, 43, 7709–7717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, X.; Chen, C. Characteristics of concurrent precipitation and wind speed extremes in China. Weather Clim. Extrem. 2021, 32, 100322. [Google Scholar] [CrossRef]
- Owen, L.E.; Catto, J.L.; Stephenson, D.B.; Dunstone, N.J. Compound precipitation and wind extremes over Europe and their relationship to extratropical cyclones. Weather Clim. Extrem. 2021, 33, 100342. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Herrera, S.; López-Moreno, J.I.; Revuelto, J.; Lehmann, A.; Beniston, M. Evolution and frequency (1970–2007) of combined temperature–precipitation modes in the Spanish mountains and sensitivity of snow cover. Reg. Environ. Chang. 2013, 13, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, B.; Janicot, S.; Monerie, P.A. Recent Changes in Air Temperature, Heat Waves Occurrences and Atmospheric Circulation in Northern Africa. J. Geophys. Res. 2013, 118, 8536–8552. [Google Scholar] [CrossRef]
- Lu, J.; Delworth, T. Oceanic forcing of the late 20th century Sahel drought. Geophys. Res. Lett. 2005, 32, L22706. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Coppola, E.; Raffaele, F.; Diro, G.T.; Fuentes-Franco, R.; Giuliani, G.; Mamgain, A.; Llopart, M.P.; Mariotti, L.; Torma, C. Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim. Change 2014, 125, 39–51. [Google Scholar] [CrossRef]
- Diallo, I.; Giorgi, F.; Deme, A.; Tall, M.; Mariotti, L.; Gaye, A.T. Projected changes of summer monsoon extremes and hy-droclimatic regimes over West Africa for the twenty-first century. Clim. Dyn. 2016, 47, 3931–3954. [Google Scholar] [CrossRef]
- Ali, A. Climate variability and change in the Sahel. Understanding the current situation by observing Climate change in the Sahel. A challenge for sustainable development. AGRHYMET Monthly Bull, 2011; 17–20. Available online: http://www.agrhymet.ne/PDF/pdfeng/specialChCang.pdf(accessed on 20 March 2021).
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Henderson, S.A.; Kennedy, P.J. Biosphere-atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. NCAR Tech. Rep. 1993, TN-387+STR, 72. [Google Scholar] [CrossRef]
- Holtslag, A.; De Bruijn, E.; Pan, H. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Pal, J.S.; Small, E.; Eltahir, E.A.B. Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. Atmos. 2000, 105, 29579–29594. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, J.M.; Chappell, C.F. Numerical Prediction of Convectively Driven Mesoscale Pressure Systems. Part I: Convective Parameterization. J. Atmos. Sci. 1980, 37, 1722–1733. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 1991, 48, 2313–2335. [Google Scholar] [CrossRef]
- Simmons, A.S.; Uppala, D.; Kobayashi, S. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl. 2007, 110, 29–35. [Google Scholar] [CrossRef]
- Uppala, S.; Dee, D.; Kobayashi, S.; Berrisford, P.; Simmons, A. Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsl. 2008, 115, 12–18. [Google Scholar] [CrossRef]
- Koné, B.; Diedhiou, A.; Touré, N.E.; Sylla, M.B.; Giorgi, F.; Anquetin, S.; Bamba, A.; Diawara, A.; Kobea, A.T. Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa. Earth Syst. Dyn. 2018, 9, 1261–1278. [Google Scholar] [CrossRef] [Green Version]
- Kouassi, A.A.; Kone, B.; Silue, S.; Dajuma, A.; N’Datchoh, T.E.; Adon, M.; Yoboue, V.; Diedhiou, A. Sensitivity Study of the RegCM4’s Surface Schemes in the Simulations of West Africa Climate. Atmos. Clim. Sci. 2022, 12, 86–104. [Google Scholar] [CrossRef]
- Zhong, Z.; Hu, Y.; Min, J.; Xu, H. Numerical experiments on the spin-up time for seasonal-scale regional climate modeling. J. Meteorol. Res. 2007, 21, 409–419. [Google Scholar]
- Camara, M.; Jenkins, G.; Konare, A. Impacts of dust on West African climate during 2005 and 2006. Atmos. Chem. Phys. 2010, 10, 3053–3086. [Google Scholar]
- Benestad, R.E.; Haugen, J.E. On complex extremes: Flood hazards and combined high spring-time precipitation and tempera-ture in Norway. Clim. Chang. 2007, 85, 381–406. [Google Scholar] [CrossRef]
- Tencer, B.; Weaver, A.; Zwiers, F. Joint Occurrence of Daily Temperature and Precipitation Extreme Events over Canada. J. Appl. Meteorol. Climatol. 2014, 53, 2148–2162. [Google Scholar] [CrossRef]
- Arsenović, P.; Tošić, I.; Unkašević, M. Trends in combined climate indices in Serbia from 1961 to 2010. Meteorol. Atmos. Phys. 2015, 127, 489–498. [Google Scholar] [CrossRef]
- Tencer, B.; Bettolli, M.L.; Rusticucci, M. Compound temperature and precipitation extreme events in southern South America: Associated atmospheric circulation, and simulations by a multi-RCM ensemble. Clim. Res. 2016, 68, 183–199. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Seneviratne, S.I. Dependence of drivers affects risks associated with compound events. Sci. Adv. 2017, 3, e1700263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Hu, H.; Li, C.; Tian, F. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Hao, Z.; Zhang, X.; Hao, F. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields. Sci. Total Environ. 2019, 689, 1228–1234. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; University of East Anglia Climatic Research Unit. CRU TS3.22: Climatic Research Unit (CRU) Time-Series (TS) Version 3.22 of High Resolution Gridded Data of Month-by-Month Variation in Climate (January 1901–December 2013); NCAS British Atmospheric Data Centre: London, UK, 2014. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Curtis, S.; Arkin, P.; Nelkin, E.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipita-tion analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Diba, I.; Camara, M. Analyse De L’impact Du Changement De La Couverture Végétale Sur La Pluie Et La Température De Surface Au Sénégal. Eur. Sci. J. ESJ 2017, 13, 270. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cheung, K. Potential impact of reforestation programmes and uncertainties in land cover effects over the loess plateau: A regional climate modeling study. Clim. Chang. 2017, 144, 475–490. [Google Scholar] [CrossRef]
Crop/Mixed Farming |
---|
1. Short grass |
2. Evergreen needleleaf tree |
3. Deciduous needleleaf tree |
4. Deciduous broadleaf tree |
5. Evergreen broadleaf tree |
6. Tall grass |
7. Desert |
8. Tundra |
9. Irrigated crop |
10. Semi-desert |
11. Ice cap/glacier |
12. Bog or marsh |
13. Inland water |
14. Ocean |
15. Evergreen shrub |
16. Deciduous shrub |
17. Mixed woodland |
18. Forest/field mosaic |
19. Water and land mixture |
Parameters | Short Grass | Tall Grass | Desert | Semi-Desert | Forest |
---|---|---|---|---|---|
Max fractional vegetation cover | 0.80 | 0.80 | 0.00 | 0.35 | 0.80 |
Vegetation albedo for wave lengths < 0.7 μm | 0.10 | 0.08 | 0.20 | 0.17 | 0.06 |
Vegetation albedo for wave lengths > 0.7 μm | 0.30 | 0.30 | 0.40 | 0.34 | 0.18 |
Difference between max fractional vegetation cover and cover at 269 K | 0.1 | 0.0 | 0.2 | 0.0 | 0.4 |
Roughness length (m) | 0.05 | 0.10 | 0.05 | 0.10 | 0.30 |
Min stomatal resistance (s/m) | 60 | 60 | 200 | 150 | 120 |
Max leaf area index | 2 | 6 | 0 | 6 | 6 |
Min leaf area index | 0.5 | 0.5 | 0 | 0.5 | 0.5 |
Stem (dead matter area index) | 4.0 | 2.0 | 0.5 | 2.0 | 2.0 |
Root zone soil layer depth (mm) | 1000 | 1000 | 1000 | 1000 | 2000 |
Soil texture type | 6 | 6 | 3 | 5 | 6 |
Soil color type | 3 | 4 | 1 | 2 | 4 |
Indices | Definitions |
---|---|
Extreme dry days | Number of days with daily rainfall different to zero and below the 10th percentile of daily mean rainfall |
Extreme warm days | Number of days with daily temperature above the 90th percentile of daily maximum temperature |
Extreme wet days | Number of days with daily rainfall above the 90th percentile of daily mean rainfall |
Compound dry/warm | Number of days with daily rainfall different to zero and below the 10th percentile of daily mean rainfall and daily temperature above the 90th percentile of daily maximum temperature |
Compound wet/warm | Number of days with daily rainfall above the 90th percentile of daily mean rainfall and daily temperature above the 90th percentile of daily maximum temperature |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camara, M.; Diba, I.; Diedhiou, A. Effects of Land Cover Changes on Compound Extremes over West Africa Using the Regional Climate Model RegCM4. Atmosphere 2022, 13, 421. https://doi.org/10.3390/atmos13030421
Camara M, Diba I, Diedhiou A. Effects of Land Cover Changes on Compound Extremes over West Africa Using the Regional Climate Model RegCM4. Atmosphere. 2022; 13(3):421. https://doi.org/10.3390/atmos13030421
Chicago/Turabian StyleCamara, Moctar, Ibrahima Diba, and Arona Diedhiou. 2022. "Effects of Land Cover Changes on Compound Extremes over West Africa Using the Regional Climate Model RegCM4" Atmosphere 13, no. 3: 421. https://doi.org/10.3390/atmos13030421
APA StyleCamara, M., Diba, I., & Diedhiou, A. (2022). Effects of Land Cover Changes on Compound Extremes over West Africa Using the Regional Climate Model RegCM4. Atmosphere, 13(3), 421. https://doi.org/10.3390/atmos13030421