Dynamic Variability of Wind Erosion Climatic Erosivity and Their Relationships with Large-Scale Atmospheric Circulation in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Computation of Wind Erosion Climatic Erosivity
2.4. Calculation of Climate Inclination Rate
2.5. Statistical Methods
3. Results
3.1. Annual and Seasonal Variation of Climatic Erosivity
3.2. Spatial Distribution of Annual Climatic Erosivity
3.3. Climatic Erosivity Anomalies Associated with ENSO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Callot, Y.; Marticorena, B.; Bergametti, G. Geomorphologic approach for modelling the surface features of arid environments in a model of dust emissions: Application to the Sahara desert. Geodin. Acta 2000, 13, 245–270. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1–31. [Google Scholar] [CrossRef]
- Kang, J.F.; Zhang, Y.N.; Biswas, A. Land Degradation and Development Processes and Their Response to Climate Change and Human Activity in China from 1982 to 2015. Remote Sens. 2021, 13, 3516. [Google Scholar] [CrossRef]
- Chepil, W.S.; Woodruff, N.P. Estimations of wind erodibility of field surfaces. J. Soil Water Conserv. 1954, 9, 285. [Google Scholar]
- Chepil, W.S.; Woodruff, N.P. The physics of wind erosion and its control. Adv. Agron. 1963, 15, 211–302. [Google Scholar]
- Chepil, W.S. Influences of moisture on erodibility of soil by wind. Soil Sci. Soc. Am. Proc. 1956, 20, 288–292. [Google Scholar] [CrossRef]
- Chepil, W.S. Conversion of relative field erodibility to annual soil loss by wind. Soil Sci. Soc. Am. J. 1960, 24, 143–145. [Google Scholar] [CrossRef]
- Tatarko, J.; Sporcic, M.A.; Skidmore, E.L. A history of wind erosion prediction models in the United States Department of Agriculture prior to the wind erosion prediction system. Aeolian Res. 2013, 10, 3–8. [Google Scholar] [CrossRef]
- Xu, K.; Wang, X.P.; Jiang, C.; Sun, O.J. Assessing the vulnerability of ecosystems to climate change based on climate exposure, vegetation stability and productivity. For. Ecosyst. 2020, 7, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Garshick, E.; Al-Hemoud, A.; Huang, S.; Koutrakis, P. Impacts of meteorology and vegetation on surface dust concentrations in Middle Eastern countries. Sci. Total Environ. 2020, 712, 136597. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.X.; Kang, G.D. Study on the wind erosion climatic erosivity in arid and semi-arid areas in China. J. Soil Water Conserv. 1994, 8, 1–7. [Google Scholar]
- Chepil, W.S.; Siddoway, F.H.; Armbrust, D.V. Climatic factor for estimating wind erodibility offarm fields. J. Soil Water Conserv. 1962, 17, 162–165. [Google Scholar]
- Woodruff, N.P.; Siddoway, F.H. A wind erosion equation. Soil Sci. Soc. Am. Proc. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Panebianco, J.E.; Buschiazzo, D.E. Erosion predictions with the Wind Erosion Equation (WEQ) using different climatic factors. Land Degrad. Dev. 2010, 19, 36–44. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94. [Google Scholar] [CrossRef]
- Lyles, L. Erosive wind energy distributions and climatic factors for the west. J. Soil Water Conserv. 1983, 38, 106–109. [Google Scholar]
- FAO. A Provisional Methodology for Soil Degradation Assessment; FAO: Rome, Italy, 1979. [Google Scholar]
- Skidmore, E.L. Wind erosion climatic erosivity. Clim. Chang. 1986, 9, 195–208. [Google Scholar] [CrossRef]
- Yang, F.B.; Lu, C.H. Spatiotemporal variation and trends in rainfall erosivity in China’s dryland region during 1961–2012. Catena 2015, 133, 362–372. [Google Scholar] [CrossRef]
- Yue, S.P.; Yang, R.X.; Yan, Y.C.; Yang, Z.W.; Wang, D.D. Spatial and temporal variations of wind erosion climatic erosivity in the farming-pastoral zone of northern china. Theor. Appl. Climatol. 2019, 135, 1339–1348. [Google Scholar] [CrossRef]
- Li, J.; Garshick, E.; Huang, S.; Koutrakis, P. Impacts of El Niño-Southern Oscillation on surface dust levels across the world during 1982–2019. Sci. Total Environ. 2021, 769, 144566. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.Y.; Mu, X.M.; Song, X.Y.; Wu, D.; Cheng, A.F.; Qiu, B. Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960–2013 under global warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H. Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia. Clim. Dynam. 2015, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.G.; Ge, J.Q.; Pang, D.Q.; He, Y.Q.; Pang, H.X. Asynchronous response of droughts to ENSO in China. J. Glaciol. Geocryol. 2006, 28, 535–542. [Google Scholar]
- Fan, F.X.; Lin, R.P.; Fang, X.G.; Xue, F.; Zheng, F.; Zhu, J. Influence of the eastern pacific and central pacific types of ENSO on the south Asian summer monsoon. Adv. Atmos. Sci. 2021, 38, 12–28. [Google Scholar] [CrossRef]
- Huang, J.P.; Guan, X.D.; Chou, J.F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 2012, 12, 5391–5398. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Zhang, Y.H.; Qiao, F. Spatial and temporal characteristics of extreme precipitation in xinjiang and its response to ENSO. J. Meteorol. Res. Appl. 2019, 40, 5–12. [Google Scholar]
- Ling, H.; Deng, X.; Long, A.; Gao, H. The multi-time-scale correlations for drought-flood index to runoff and North Atlantic Oscillation in the head streams of Tarim River, Xinjiang, China. Hydrol. Res. 2017, 48, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Chen, Y.N.; Li, W.H.; Wang, M.Z.; Sun, G.L. Impacts of climatic change on river runoff in northern Xinjiang of China over last fifty years. Chin. Geogr. Sci. 2010, 20, 193–201. [Google Scholar] [CrossRef]
- Zhang, K.X.; Dai, S.P.; Dong, X.G. Dynamic variability in daily temperature extremes and their relationships with large-scale atmospheric circulation during 1960–2015 in Xinjiang, China. Chin. Geogr. Sci. 2019, 30, 99–248. [Google Scholar] [CrossRef] [Green Version]
- Ke, C.Q.; Li, X.C.; Xie, H.J.; Ma, D.H.; Liu, X.; Kou, C. Variability in snow cover phenology in China from 1952 to 2010. Hydrol. Earth Syst. Sci. 2016, 20, 755–770. [Google Scholar] [CrossRef] [Green Version]
- Bao, A.M.; Yang, G.H.; Liu, H.L.; Liu, Y. Evaluation of Wind Erosion in Xinjiang Based on Grid Method. Soil Sci. 2012, 177, 69–77. [Google Scholar]
- Chen, Y.N.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.L.; Lu, B.; Wan, J.H.; Tian, B.; Zhang, P.Q. Identification standard for ENSO events and its application to climate monitoring and prediction in China. J. Meteorol. Res. 2018, 32, 923–936. [Google Scholar] [CrossRef]
- Wu, C.Y.; Chen, K.L.; Cao, G.C.; Duan, S.Q.; Xue, H.J.; Chongyi, Z.; Luo, Z.X. The spatial and temporal differences and driving forces of wind erosion climatic erosivity in Qinghai province from 1984 to 2013. Geogr. Res. 2018, 37, 717–730. [Google Scholar]
- Lai, C.; Chen, X.; Wang, Z.; Wu, X.; Zhao, S.; Wu, X.; Bai, W. Spatio-temporal variation in rainfall erosivity during 1960–2012 in the Pearl River Basin, China. Catena 2016, 137, 382–391. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc. Geoph. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Hong, M.; Zhang, R.; Qian, L.X.; Ge, J.J. The time-delayed correlation analysis of the several factors which affect “0801 Blizzard” based on the cross wavelet and wavelet coherence transform methods. Adv. Mater. Res. 2012, 518–523, 5198–5202. [Google Scholar] [CrossRef]
- Ma, X.X.; Xiao, J.H.; Yao, Z.Y.; Wei, M.N.; Wu, Q.R.; Hong, X.F. Spatio-temporal evolution of wind erosion climatic erosivity in the Alxa Plateau during 1960-2017. Sci. Geogr. Sinica 2021, 41, 1096–1104. [Google Scholar]
- Lou, J.P.; Wang, X.M.; Cai, D.W. Spatial and temporal variation of wind erosion climatic erosivity and its response to ENSO in the Otindag Desert, China. Atmosphere 2019, 10, 614. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, X.Y.; Xiao, J.H.; Yao, Z.Y. Variations of wind erosion climatic erosivity in the Yarlung Zangbo River Basin during 1961-2015. Sci. Geogr. Sinica 2019, 39, 688–695. [Google Scholar]
- Zhang, Y.W.; Wei, W.S.; Jiang, F.Q.; Liu, M.Z. Recent and future climate change in Xinjiang, NW China. Adv. Mater. Res. 2012, 518–523, 1689–1694. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.H.; Wang, W.; Ma, P.L.; Lu, G.Y.; Liu, X.Y.; Yu, H.P.; Fang, F. Climatic warming and humidification in the Arid Region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation. J. Meteorol. Res. 2021, 35, 113–127. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.H.; Zhang, X.J.; Feng, S.; Chen, F.H. Definition of the core zone of the “westerlies-dominated climatic regime”, and its controlling factors during the instrumental period. Sci. China Earth Sci. 2015, 58, 676–684. [Google Scholar] [CrossRef]
- He, Y.; Yang, T.B.; Chen, J.; Ji, Q.; Wang, K. Wind speed change in north and south Xinjiang from 1960 to 2013. Arid Land Geogr. 2015, 38, 249–259. [Google Scholar]
- Zhao, Y.; Wang, M.Z.; Huang, A.N.; Li, H.J.; Huo, W.; Yang, Q. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang. Theor. Appl. Climatol. 2014, 116, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Fan, W.B.; Xu, Z.Y.; Dong, Q.Q.; Wei, J.T.; Li, C.X. Spatiotemporal variation characteristics of erosivity of wind erosion climate in Xinjiang in recent 50 years. Res. Soil Water Conserv. 2021, 28, 22–28. [Google Scholar]
- Yang, X.H.; Shen, S.H.; Yang, F.; He, Q.; Ali, M.; Huo, W.; Liu, X.C. Spatial and temporal variations of blowing dust events in the Taklimakan Desert. Theor. Appl. Climatol. 2016, 125, 669–677. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, A.N.; Zhao, Y.; Yang, Q.; Jian, J.; La, M.K. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang. Theor. Appl. Climatol. 2015, 119, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Li, C.F.; Lu, R.Y.; Bett, P.E.; Scaife, A.A.; Martin, N. Skillful seasonal forecasts of summer surface air temperature in western China by Global Seasonal Forecast System version 5. Adv. Atmos. Sci. 2018, 35, 955–964. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, S.Y.; Du, M.Y.; Chen, Q.; He, C.C.; Zhang, J.; Zhu, Y.N.; Gong, Y.T. The influence of ENSO and MJO on drought in different ecological geographic regions in China. Remote Sens. 2021, 13, 875. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y.F.; Zhan, H.B.; Jin, M.G.; Liang, X. Influence of solar activity and EI Nino-Southern Oscillation on precipitation extremes, streamflow variability and flooding events in an arid-semiarid region of China. J. Hydrol. 2021, 601, 126630. [Google Scholar] [CrossRef]
- Yao, J.Q.; Tuoliewubieke, D.; Chen, J.; Huo, W.; Hu, W.F. Identification of drought events and correlations with Large-Scale Ocean-Atmospheric patterns of variability: A case study in Xinjiang, China. Atmosphere 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Yao, J.; He, Q.; Chen, J. Changes in precipitation amounts and extremes across Xinjiang (northwest China) and their connection to climate indices. PeerJ 2021, 9, e10792. [Google Scholar] [CrossRef]
Time | Upward Trends | Nonsignificant Increase | Significant Increase | Downward Trends | Nonsignificant Decrease | Significant Decrease |
---|---|---|---|---|---|---|
Spring | 10 | 8 | 2 | 52 | 10 | 42 |
Summer | 10 | 6 | 4 | 52 | 13 | 39 |
Autumn | 16 | 10 | 6 | 46 | 11 | 35 |
Winter | 24 | 11 | 13 | 38 | 22 | 16 |
Annual | 14 | 10 | 4 | 50 | 14 | 36 |
Events | Time Span | Average C-Factor Value | Events | Time Span | Average C-Factor Value |
---|---|---|---|---|---|
El Niño | 1969.01–1970.01 | 4.60 | La Niña | 1995.08–1996.03 | 1.94 |
La Niña | 1970.07–1972.01 | 4.62 | El Niño | 1997.05–1998.05 | 3.19 |
El Niño | 1972.05–1973.03 | 4.60 | La Niña | 1998.07–2001.03 | 3.86 |
La Niña | 1973.06–1976.03 | 4.75 | El Niño | 2002.06–2003.02 | 3.48 |
El Niño | 1976.09–1977.02 | 2.26 | El Niño | 2004.07–2005.04 | 3.51 |
El Niño | 1977.09–1978.01 | 2.64 | El Niño | 2006.09–2007.01 | 2.05 |
El Niño | 1979.10–1980.02 | 1.90 | La Niña | 2007.08–2008.06 | 3.30 |
El Niño | 1982.04–1983.06 | 5.03 | El Niño | 2009.07–2010.04 | 3.27 |
La Niña | 1984.10–1985.06 | 3.95 | La Niña | 2010.07–2011.04 | 3.31 |
El Niño | 1986.09–1988.02 | 3.07 | La Niña | 2011.08–2012.02 | 2.20 |
La Niña | 1988.05–1989.05 | 3.81 | La Niña | 2014.11–2016.03 | 2.90 |
El Niño | 1991.06–1992.07 | 3.03 | La Niña | 2017.09–2018.02 | 2.35 |
El Niño | 1994.10–1995.03 | 1.60 | El Niño | 2018.10–2019.05 | 2.01 |
Lag Phase | El Niño | La Niña | ||
---|---|---|---|---|
Correlativity | Significance | Correlativity | Significance | |
Corresponding period | −0.31 ** | 0.00 | 0.12 | 0.13 |
One-month lag | −0.34 ** | 0.00 | 0.11 | 0.18 |
Two-month lag | −0.30 ** | 0.00 | 0.05 | 0.51 |
Three-month lag | −0.15 | 0.06 | −0.09 | 0.27 |
Four-month lag | −0.02 | 0.79 | −0.18 * | 0.03 |
Five-month lag | 0.10 | 0.20 | −0.31 ** | 0.00 |
Six-month lag | 0.15 | 0.06 | −0.32 ** | 0.00 |
Seven-month lag | 0.14 | 0.08 | −0.23 ** | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, H.; Fan, W.; Qiao, C.; Sun, K. Dynamic Variability of Wind Erosion Climatic Erosivity and Their Relationships with Large-Scale Atmospheric Circulation in Xinjiang, China. Atmosphere 2022, 13, 419. https://doi.org/10.3390/atmos13030419
Wang Y, Yang H, Fan W, Qiao C, Sun K. Dynamic Variability of Wind Erosion Climatic Erosivity and Their Relationships with Large-Scale Atmospheric Circulation in Xinjiang, China. Atmosphere. 2022; 13(3):419. https://doi.org/10.3390/atmos13030419
Chicago/Turabian StyleWang, Yaqin, Haimei Yang, Wenbo Fan, Changlu Qiao, and Kai Sun. 2022. "Dynamic Variability of Wind Erosion Climatic Erosivity and Their Relationships with Large-Scale Atmospheric Circulation in Xinjiang, China" Atmosphere 13, no. 3: 419. https://doi.org/10.3390/atmos13030419
APA StyleWang, Y., Yang, H., Fan, W., Qiao, C., & Sun, K. (2022). Dynamic Variability of Wind Erosion Climatic Erosivity and Their Relationships with Large-Scale Atmospheric Circulation in Xinjiang, China. Atmosphere, 13(3), 419. https://doi.org/10.3390/atmos13030419