Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting
Abstract
:1. Introduction
- Gap filling. If a sensor in an array becomes inoperative for some reason, the missing values from that station can be filled by the other stations in the area.
- Greater use of limited experimental resources. At the end of a field campaign, temporarily deployed instruments are removed, while permanent weather stations remain. The data from the permanent weather stations can be used to predict observations at the locations where the stations were removed, increasing operational capacity and the amount of data available for modeling and science. Increased data, especially in complex terrain, where spatial variability is high over small length scales, can allow for a better understanding of atmospheric physics and can improve forecasting ability of phenomena that depend on weak-wind variability as well as small temperature and humidity differences, such as dispersion [8,9] and frost or fog formation [10].
2. Background
3. Methods
3.1. Experiment Overview
3.2. ANN Details
3.3. MLR Details
4. Experiment and Results
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
LEMS | Local Energy-Budget Measurement Stations |
MLR | Multiple Linear Regression |
NRMSE | Normalized Root-Mean-Squared Error |
Appendix A. Artificial Neural Network Sensitivity Tests
Appendix B. Paired in Space and Time ANN and MLR Evaluations
Appendix C. Multiple Linear Regression Location Sensitivity
Appendix D. Input Variable Correlations
Appendix E. Random Forest Preliminary Results
References
- Emeis, S. Measurement Methods in Atmospheric Sciences: In Situ and Remote; Gebrüder Borntraeger Science Publishers: Stuttgart, Germany, 2010. [Google Scholar]
- Miller, N.E.; Stoll, R.; Mahafee, W.; Neill, T.; Pardyjak, E.R. Field-scale particle transport in a trellised agricultural canopy during periods of row-aligned winds. In Proceedings of the 22nd Symposium Boundary Layers and Turbulence, Salt Lake City, UT, USA, 20–24 June 2016. [Google Scholar]
- Duine, G.J.; Hedde, T.; Roubin, P.; Durand, P. A Simple Method Based on Routine Observations to Nowcast Down-Valley Flows in Shallow, Narrow Valleys. J. Appl. Meteorol. Climatol. 2016, 55, 1497–1511. [Google Scholar] [CrossRef]
- Duine, G.J.; Hedde, T.; Roubin, P.; Durand, P.; Lothon, M.; Lohou, F.; Augustin, P.; Fourmentin, M. Characterization of valley flows within two confluent valleys under stable conditions: Observations from the KASCADE field experiment. Q. J. R. Meteorol. Soc. 2017, 143, 1886–1902. [Google Scholar] [CrossRef] [Green Version]
- Philippopoulos, K.; Deligiorgi, D. Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography. Renew. Energy 2012, 38, 75–82. [Google Scholar] [CrossRef]
- Fernando, H.; Pardyjak, E.; Di Sabatino, S.; Chow, F.; De Wekker, S.; Hoch, S.; Hacker, J.; Pace, J.; Pratt, T.; Pu, Z.; et al. The MATERHORN: Unraveling the intricacies of mountain weather. Bull. Am. Meteorol. Soc. 2015, 96, 1945–1967. [Google Scholar] [CrossRef]
- Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E.R.; Reuder, J.; de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; et al. The BLLAST field experiment: Boundary-layer late afternoon and sunset turbulence. Atmos. Chem. Phys. 2014, 14, 10931–10960. [Google Scholar] [CrossRef] [Green Version]
- Banta, R.; Olivier, L.; Gudiksen, P.; Lange, R. Implications of small-scale flow features to modeling dispersion over complex terrain. J. Appl. Meteorol. Climatol. 1996, 35, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Giovannini, L.; Ferrero, E.; Karl, T.; Rotach, M.W.; Staquet, C.; Trini Castelli, S.; Zardi, D. Atmospheric Pollutant Dispersion over Complex Terrain: Challenges and Needs for Improving Air Quality Measurements and Modeling. Atmosphere 2020, 11, 646. [Google Scholar] [CrossRef]
- Zhou, B.; Du, J. Fog prediction from a multimodel mesoscale ensemble prediction system. Weather. Forecast. 2010, 25, 303–322. [Google Scholar] [CrossRef]
- Grubišić, V.; Doyle, J.D.; Kuettner, J.; Mobbs, S.; Smith, R.B.; Whiteman, C.D.; Dirks, R.; Czyzyk, S.; Cohn, S.A.; Vosper, S.; et al. The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Am. Meteorol. Soc. 2008, 89, 1513–1534. [Google Scholar] [CrossRef]
- Chow, F.K.; De Wekker, S.F.; Snyder, B.J. Mountain Weather Research and Forecasting: Recent Progress and Current Challenges; Springer Science & Business Media: Dordrecht, The Netherlands, 2013; p. 760. [Google Scholar] [CrossRef]
- Rotach, M.W.; Stiperski, I.; Fuhrer, O.; Goger, B.; Gohm, A.; Obleitner, F.; Rau, G.; Sfyri, E.; Vergeiner, J. Investigating Exchange Processes over Complex Topography: The Innsbruck Box (i-Box). Bull. Am. Meteorol. Soc. 2017, 98, 787–805. [Google Scholar] [CrossRef]
- Lehner, M.; Rotach, M.W. Current challenges in understanding and predicting transport and exchange in the atmosphere over mountainous terrain. Atmosphere 2018, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Sfyri, E.; Rotach, M.W.; Stiperski, I.; Bosveld, F.C.; Lehner, M.; Obleitner, F. Scalar-Flux Similarity in the Layer Near the Surface Over Mountainous Terrain. Bound.-Layer Meteorol. 2018, 169, 11–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnigan, J.; Ayotte, K.; Harman, I.; Katul, G.; Oldroyd, H.; Patton, E.; Poggi, D.; Ross, A.; Taylor, P. Boundary-Layer Flow Over Complex Topography. Bound.-Layer Meteorol. 2020, 177, 247–313. [Google Scholar] [CrossRef]
- Fernando, H.J.S. Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech. 2010, 42, 365–389. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Lareau, N.P.; Crosman, E.; Whiteman, C.D.; Horel, J.D.; Hoch, S.W.; Brown, W.O.J.; Horst, T.W.; Lareau, N.P.; Crosman, E.; Whiteman, C.D.; et al. The Persistent Cold-Air Pool Study. Bull. Am. Meteorol. Soc. 2013, 94, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, L. Stably stratified flow in a shallow valley. Bound.-Layer Meteorol. 2017, 162, 1–20. [Google Scholar] [CrossRef]
- Hang, C.; Nadeau, D.F.; Gultepe, I.; Hoch, S.W.; Román-Cascón, C.; Pryor, K.; Fernando, H.J.S.; Creegan, E.D.; Leo, L.S.; Silver, Z.; et al. A case study of the mechanisms modulating the evolution of valley fog. Pure Appl. Geophys. 2016, 173, 3011–3030. [Google Scholar] [CrossRef]
- Baskett, R.L.; Nasstrom, J.S.; Lange, R. Emergency response model evaluation using Diablo Canyon nuclear power plant tracer experiments. In Air Pollution Modeling and Its Application VIII; Springer: Boston, MA, USA, 1991; pp. 603–604. [Google Scholar]
- Stohl, A.; Seibert, P.; Wotawa, G.; Arnold, D.; Burkhart, J.F.; Eckhardt, S.; Tapia, C.; Vargas, A.; Yasunari, T.J. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: Determination of the source term, atmospheric dispersion, and deposition. Atmos. Chem. Phys. 2012, 12, 2313–2343. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.; Houston, L.; Weiher, R. The Value of Snow and Snow Information Services; Report Prepared for NOAA’s National Operational Hydrological Remote Sensing Center, Chanhassen, MN, under contract DG1330-03-SE-1097; NOAA: Chanhassen, MN, USA, 2004. [Google Scholar]
- Acevedo, O.C.; Fitzjarrald, D.R. The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci. 2001, 58, 2650–2667. [Google Scholar] [CrossRef]
- LeMone, M.a.; Ikeda, K.; Grossman, R.L.; Rotach, M.W. Horizontal variability of 2-m temperature at night during CASES-97. J. Atmos. Sci. 2003, 60, 2431–2449. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. MATLAB Neural Network Toolbox User’s Guide; Technical Report R2017b; Mathworks: Natick, MA, USA, 2017. [Google Scholar]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Mirchandani, G.; Cao, W. On hidden nodes for neural nets. IEEE Trans. Circuits Syst. 1989, 36, 661–664. [Google Scholar] [CrossRef]
- Mass, C. Nowcasting: The promise of new technologies of communication, modeling, and observation. Bull. Am. Meteorol. Soc. 2012, 93, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Wikle, C.K.; Fox, N.I. A kernel-based spatio-temporal dynamical model for nowcasting weather radar reflectivities. J. Am. Stat. Assoc. 2005, 100, 1133–1144. [Google Scholar] [CrossRef]
- Novak, P. The Czech Hydrometeorological Institute’s severe storm nowcasting system. Atmos. Res. 2007, 83, 450–457. [Google Scholar] [CrossRef]
- Wilson, J.W.; Crook, N.A.; Mueller, C.K.; Sun, J.; Dixon, M. Nowcasting thunderstorms: A status report. Bull. Am. Meteorol. Soc. 1998, 79, 2079–2099. [Google Scholar] [CrossRef]
- Rasmussen, R.; Dixon, M.; Hage, F.; Cole, J.; Wade, C.; Tuttle, J.; McGettigan, S.; Carty, T.; Stevenson, L.; Fellner, W.; et al. Weather Support to Deicing Decision Making (WSDDM): A winter weather nowcasting system. Bull. Am. Meteorol. Soc. 2001, 82, 579–595. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Kuhn, T.; Pavolonis, M.; Calvert, C.; Gurka, J.; Heymsfield, A.J.; Liu, P.S.K.; Zhou, B.; Ware, R.; Ferrier, B.; et al. Ice fog in Arctic during FRAM–Ice Fog Project: Aviation and nowcasting applications. Bull. Am. Meteorol. Soc. 2014, 95, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.N.; Warner, T.T.; Leavesley, G.H. Prediction of a flash flood in complex terrain. Part II: A comparison of flood discharge simulations using rainfall input from radar, a dynamic model, and an automated algorithmic system. J. Appl. Meteorol. 2000, 39, 815–825. [Google Scholar] [CrossRef]
- Kumar, A.; Islam, T.; Sekimoto, Y.; Mattmann, C.; Wilson, B. Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data. PLoS ONE 2020, 15, e0230114. [Google Scholar] [CrossRef] [PubMed]
- Demetriades, N.W.S.; Holle, R.L. Long range lightning nowcasting applications for tropical cyclones. In Proceedings of the Conference Meteorology Application of Lightning Data, Atlanta, GA, USA, 9–13 January 2006; pp. 353–365. [Google Scholar]
- Gunawardena, N.; Pardyjak, E.; Stoll, R.; Khadka, A. Development and evaluation of an open-source, low-cost distributed sensor network for environmental monitoring applications. Meas. Sci. Technol. 2018, 29, 024008. [Google Scholar] [CrossRef]
- Öztopal, A. Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers. Manag. 2006, 47, 395–406. [Google Scholar] [CrossRef]
- Benvenuto, F.; Marani, A. Neural networks for environmental problems: Data quality control and air pollution nowcasting. Glob. NEST Int. J. 2000, 2, 281–292. [Google Scholar]
- Videnova, I.; Nedialkov, D.; Dimitrova, M.; Popova, S. Neural networks for air pollution nowcasting. Appl. Artif. Intell. 2006, 20, 493–506. [Google Scholar] [CrossRef]
- Ruppert, J.; Mauder, M.; Thomas, C.; Lüers, J. Innovative gap-filling strategy for annual sums of CO2 net ecosystem exchange. Agric. For. Meteorol. 2006, 138, 5–18. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; et al. Gap filling strategies for long term energy flux data sets. Agric. For. Meteorol. 2001, 107, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, M.R.; Arevalo, J.; Risanto, C.B.; Javadian, M.; Devine, C.J.; Arabzadeh, A.; Venegas-Quiñones, H.L.; Dell’Oro, A.P.; Behrangi, A. 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water 2020, 12, 3067. [Google Scholar] [CrossRef]
- Moffat, A.M.; Papale, D.; Reichstein, M.; Hollinger, D.Y.; Richardson, A.D.; Barr, A.G.; Beckstein, C.; Braswell, B.H.; Churkina, G.; Desai, A.R.; et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 2007, 147, 209–232. [Google Scholar] [CrossRef]
- Tardivo, G.; Berti, A. A dynamic method for gap filling in daily temperature datasets. J. Appl. Meteorol. Climatol. 2012, 51, 1079–1086. [Google Scholar] [CrossRef]
- Kemp, W.; Burnell, D.; Everson, D.; Thomson, A. Estimating missing daily maximum and minimum temperatures. J. Clim. Appl. Meteorol. 1983, 22, 1587–1593. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, E.R.; Silva, R.M.d.; Madeira, J.G.F.; Coutinho, P.R.d.O.d.S.; Boloy, R.A.M.; Delgado, A.R.S. Application of artificial neural networks (ANNs) in the gap filling of meteorological time series. Rev. Bras. Meteorol. 2018, 33, 317–328. [Google Scholar] [CrossRef]
- Lahoz, W.; Khattatov, B.; Menard, R. Data Assimilation; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bishop, G.; Welch, G. An Introduction to the Kalman Filter. In Proceedings of the SIGGRAPH 2001, Los Angeles, CA, USA, 12–17 August 2001; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2001; Volume 8, p. 41. [Google Scholar]
- Asa, E. Nonlinear spatial characterization and interpolation of wind data. Wind Eng. 2012, 36, 251–272. [Google Scholar] [CrossRef]
- Friedland, C.J.; Joyner, T.A.; Massarra, C.; Rohli, R.V.; Treviño, A.M.; Ghosh, S.; Huyck, C.; Weatherhead, M. Isotropic and anisotropic kriging approaches for interpolating surface-level wind speeds across large, geographically diverse regions. Geomat. Nat. Hazards Risk 2017, 8, 207–224. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 1. [Google Scholar]
- Osborne, M.A.; Roberts, S.J.; Rogers, A.; Ramchurn, S.D.; Jennings, N.R. Towards real-time information processing of sensor network data using computationally efficient multi-output Gaussian processes. In Proceedings of the 2008 International Conference on Information Processing in Sensor Networks (IPSN 2008), St. Louis, MO, USA, 22–24 April 2008; pp. 109–120. [Google Scholar] [CrossRef] [Green Version]
- Hart, Q.J.; Brugnach, M.; Temesgen, B.; Rueda, C.; Ustin, S.L.; Frame, K. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civ. Eng. Environ. Syst. 2009, 26, 19–33. [Google Scholar] [CrossRef]
- Apaydin, H.; Kemal Sonmez, F.; Yildirim, Y.E. Spatial interpolation techniques for climate data in the GAP region in Turkey. Clim. Res. 2004, 28, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Taylor, M.C.; Parker, S.R. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. Int. J. Climatol. 2008, 28, 947–959. [Google Scholar] [CrossRef]
- Dupuy, F.; Duine, G.J.; Durand, P.; Hedde, T.; Pardyjak, E.; Roubin, P. Valley Winds at the Local Scale: Correcting Routine Weather Forecast Using Artificial Neural Networks. Atmosphere 2021, 12, 128. [Google Scholar] [CrossRef]
- OpenStreetMap Contributors. Planet Dump. 2017. Available online: https://www.openstreetmap.org (accessed on 26 October 2021).
- Dupuy, F.; Duine, G.J.; Durand, P.; Hedde, T.; Pardyjak, E.R.; Roubin, P. Valley-winds at the local scale: Local-scale valley wind retrieval using an artificial neural network applied to routine weather observations. J. Appl. Meteorol. Climatol. 2019. [Google Scholar] [CrossRef] [Green Version]
- van der Meulen, J.P.; Brandsma, T. Thermometer screen intercomparison in De Bilt (The Netherlands), Part I: Understanding the weather-dependent temperature differences. Int. J. Climatol. 2008, 28, 371–387. [Google Scholar] [CrossRef]
- Kristensen, L. Cup anemometer behavior in turbulent environments. J. Atmos. Ocean. Technol. 1998, 15, 5–17. [Google Scholar] [CrossRef]
- Wyngaard, J.C. Cup, propeller, vane, and sonic anemometers in turbulence research. Annu. Rev. Fluid Mech. 1981, 13, 399–423. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; Technical Report; National Center For Atmospheric Research Boulder Co., Mesoscale and Microscale Meteorology Division: Boulder, CO, USA, 2005. [Google Scholar]
- MathWorks. Levenberg-Marquardt Backpropagation—MATLAB Trainlm; MathWorks: Natick, MA, USA, 2018. [Google Scholar]
- MathWorks. Choose a Multilayer Neural Network Training Function; MathWorks: Natick, MA, USA, 2021. [Google Scholar]
- Krogh, A.; Vedelsby, J. Neural network ensembles, cross validation, and active learning. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 27–30 November 1995; pp. 231–238. [Google Scholar]
- Hansen, L.K.; Salamon, P. Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 993–1001. [Google Scholar] [CrossRef] [Green Version]
- MathWorks. MATLAB Statistics and Machine Learning Toolbox User’s Guide; Technical Report R2017b; Mathworks: Natick, MA, USA, 2017. [Google Scholar]
- Dupuy, F. Amélioration de la Connaissance et de la Prévision des Vents de Vallée en Conditions Stables: Expérimentation et Modélisation Statistique avec Réseau de Neurones Artificiels. Ph.D. Thesis, University of Toulouse III—Paul Sabatier, Toulouse, France, 2018. [Google Scholar]
- Valavi, R.; Guillera-Arroita, G.; Lahoz-Monfort, J.J.; Elith, J. Predictive performance of presence-only species distribution models: A benchmark study with reproducible code. Ecol. Monogr 2021, 92, e01486. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Weng, Q.; Liu, H.; Valavi, R. Modeling the spatial variation of urban land surface temperature in relation to environmental and anthropogenic factors: A case study of Tehran, Iran. GISci. Remote Sens. 2020, 57, 483–496. [Google Scholar] [CrossRef]
- Poole, M.A.; O’Farrell, P.N. The assumptions of the linear regression model. Trans. Inst. Br. Geogr. 1971, 52, 145–158. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: New York, NY, USA, 2013; Volume 112. [Google Scholar]
- McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018. [Google Scholar]
- Neter, J.; Kutner, M.H.; Nachtsheim, C.J.; Wasserman, W. Applied Linear Statistical Models; Irwin: Chicago, IL, USA, 1996. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp. 105–107. [Google Scholar]
- Sagaut, P. Large Eddy Simulation for Incompressible Flows: An Introduction; Springer Science & Business Media: Berlin, Germany, 2006. [Google Scholar]
- Ehsani, M.R.; Behrangi, A.; Adhikari, A.; Song, Y.; Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Nelkin, E.J. Assessment of the Advanced Very High Resolution Radiometer (AVHRR) for Snowfall Retrieval in High Latitudes Using CloudSat and Machine Learning. J. Hydrometeorol. 2021, 22, 1591–1608. [Google Scholar] [CrossRef]
- Orr, G.B.; Müller, K.R. Neural Networks: Tricks of the Trade; Springer: Berlin, Germany, 2003. [Google Scholar]
- Heaton, J. Introduction to Neural Networks with Java, 2nd ed.; Heaton Research, Inc.: St. Louis, MO, USA, 2008. [Google Scholar]
Name | Latitude | Longitude | Elevation (m) |
---|---|---|---|
LEMS A | 43.68483 | 5.76803 | 332 |
LEMS B | 43.68568 | 5.76885 | 347 |
LEMS C | 43.66839 | 5.76142 | 397 |
LEMS D | 43.67518 | 5.78671 | 328 |
LEMS E | 43.68263 | 5.76568 | 293 |
LEMS F | 43.66871 | 5.77791 | 383 |
LEMS G | 43.67848 | 5.75763 | 325 |
LEMS H | 43.69141 | 5.74918 | 276 |
LEMS I | 43.69300 | 5.76253 | 385 |
LEMS J | 43.69548 | 5.74323 | 262 |
LEMS K | 43.68038 | 5.76003 | 317 |
LEMS L | 43.68879 | 5.77071 | 368 |
Variable | 15 January 2017–20 January 2017 | 27 January 2017–1 February 2017 |
---|---|---|
Specific Humidity | 0.29 | 0.68 |
Virtual Potential Temperature | 0.82 | 0.47 |
U | 0.71 | 6.6 × 10−3 |
V | 0.75 | 2.0 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawardena, N.; Durand, P.; Hedde, T.; Dupuy, F.; Pardyjak, E. Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting. Atmosphere 2022, 13, 408. https://doi.org/10.3390/atmos13030408
Gunawardena N, Durand P, Hedde T, Dupuy F, Pardyjak E. Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting. Atmosphere. 2022; 13(3):408. https://doi.org/10.3390/atmos13030408
Chicago/Turabian StyleGunawardena, Nipun, Pierre Durand, Thierry Hedde, Florian Dupuy, and Eric Pardyjak. 2022. "Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting" Atmosphere 13, no. 3: 408. https://doi.org/10.3390/atmos13030408
APA StyleGunawardena, N., Durand, P., Hedde, T., Dupuy, F., & Pardyjak, E. (2022). Data Filling of Micrometeorological Variables in Complex Terrain for High-Resolution Nowcasting. Atmosphere, 13(3), 408. https://doi.org/10.3390/atmos13030408