Assessment of Human Outdoor Thermal Comfort in a Palm Grove during the Date Palm Phenological Cycle
Abstract
:1. Introduction
- What is the impact of palm groves on human thermal requirements?
- Is the palm tree a suitable tool for thermal mitigation within Saharan cities?
2. Methodology
2.1. Study Area
2.2. Palm Grove Characteristics
2.3. Phenological Cycle of the Date Palm
2.4. Field Monitoring
2.5. Outdoor Thermal Comfort Evaluation Criteria
- (i)
- Thermal indices based on humans’ energy balance, representing the interaction among metabolic activities, clothing, and environmental parameters, and on people’s thermal perceptions, such as the COMFA model [29], the index of thermal stress (ITS) [30], physiological equivalent temperature (PET) [31], predicted mean vote (PMV) [32], perceived temperature (PT) [33], and the universal thermal climate index (UTCI) [34];
- (ii)
- Indices based on linear equations which define human comfort as an interaction of the thermal environment, focusing on the impact of air temperature and relative humidity but neglecting human behaviour, such as the apparent temperature (AT) [35], the discomfort index (DI) [36,37], the environmental stress index (ESI) [38], effective temperature (ET) [39], the heat index (HI) [40], and the relative strain index (RSI) [41];
- (iii)
- Empirical indices, which are very close to linear equation indices, define human comfort for a specific climate and are defined as linear regressions based on field studies (onsite monitoring and surveys), such as the actual sensation vote (ASV) [42], thermal sensation (TS) [43], and the thermal sensation vote (TSV) [44].
3. Results
3.1. Data Processing and Analysis
3.2. Palm Grove Thermal Requirements
4. Discussion
4.1. Findings and Recommendations
- ▪
- During eight (8) months of the normal phenological cycle of palm trees, cultivators or inhabitants feel thermally discomfort for 70% of the total duration, equivalent to 168 days (more than five (5) months).
- ▪
- Inhabitants, generally the owners of the palm trees, live inside the palm grove and are exposed to extreme thermal conditions, specifically to high day and night air temperatures during this period.
- ▪
- The period between midday and 7:00 p.m. during June, July, and August was the hottest time when the air temperatures reached their maximum with Td max = 46.3 °C and with the minimum relative humidity of RH min = 6.20% at 3:00 p.m. Remarkably, the cultivators avoid carrying out any tasks in that time due to the strong discomfort inside the palm grove area.
- ▪
- Regular thermal requirements for this cultivar of date palm can adapt to air temperature ranges between zero and 50.4 °C [16], unlike human thermal stress, which can be experienced from 25 °C. The Deglet Nour cultivar needs temperatures between 30 °C and 38 °C for their peak fruit activity; these thresholds can generate a medium discomfort to extreme discomfort for human thermal sensitivity.
- ▪
- Therefore, the average air temperature of no human discomfort is lower than the favourable air temperature thresholds of the suitable ranges for date palm activity. Temperatures under 25 °C were only recorded during the beginning of the palm tree fertilization period and half of the harvest period.
- ▪
- Unsurprisingly, relative humidity did not play a crucial thermal role in human discomfort levels, in contrast to date palm fruits, which can adapt to a range between 40% and 60% [20]. In such a climate, the outdoor thermal comfort was most influenced by air temperature.
4.2. Strength and Limitations
4.3. Implications for Practice and Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munier, P. Le Palmier Dattier. Techniques Agricoles et Productions Tropicales; Maisonneuve et Larose: Paris, France, 1973; Volume 217. [Google Scholar]
- Alkama, D.; Tacherift, A. Essai D’Analyse Typo-Morphologique des Noyaux Urbains Traditionnels Dans la Région des Ziban; Courrier du Savoir; University of Biskra: Biskra, Algeria, 2001. [Google Scholar]
- Sarlak, M.; Ferretti, L.V.; Biasi, R. The Productive Landscape in the Desert Margin for the Sustainable Development of Rural Settlements: An Innovative Greenbelt for Maranjab Desert in Iran. Sustainability 2021, 13, 2077. [Google Scholar] [CrossRef]
- born Bouzaher, S.L.; Alkama, D. The requalification of the palm trees of Ziban as a tool for sustainable planning. Procedia-Soc. Behav. Sci. 2013, 102, 508–519. [Google Scholar] [CrossRef] [Green Version]
- Coté, M. (Ed.) La Ville et le Désert: Le Bas-Sahara Algérien; Karthala Éditions: Paris, France, 2005. [Google Scholar]
- Côte, M. Signatures Sahariennes: Terroirs & Territoires Vus du Ciel; Méditerranée; Presses Universitaires de Provence: Aix-en-Provence, France, 2012. [Google Scholar]
- Taha, H.; Akbari, H.; Rosenfeld, A. Heat island and oasis effects of vegetative canopies: Micro-meteorological field-measurements. Theor. Appl. Climatol. 1991, 44, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Sellami, M.H.; Sifaoui, M.S. Measurements of microclimatic factors inside the oasis: Interception and sharing of solar radiation. Renew. Energy 1998, 13, 67–76. [Google Scholar] [CrossRef]
- Saaroni, H.; Bitan, A.; Dor, E.B.; Feller, N. The mixed results concerning the ‘oasis effect’in a rural settlement in the Negev Desert, Israel. J. Arid. Environ. 2004, 58, 235–248. [Google Scholar] [CrossRef]
- Potchter, O.; Goldman, D.; Kadish, D.; Iluz, D. The oasis effect in an extremely hot and arid climate: The case of southern Israel. J. Arid. Environ. 2008, 72, 1721–1733. [Google Scholar] [CrossRef]
- Amrani, K. L’oasis et la menace climatique: Aperçu et scénario probable. In Sesame: Sciences et Sociétés, Alimentation, Mondes Agricoles et Environnement; Mission Agrobiosciences-Inra: Grenoble, France, 2018. [Google Scholar]
- Faci, M.; Oubadi, M.; Matari, A.; Farhi, Y. Analyse des journées caniculaires au sahara algérien. Rev. Régions Arid. 2018, 44, 37–42. [Google Scholar]
- Van Schaik, C.P.; Terborgh, J.W.; Wright, S.J. The phenology of tropical forests: Adaptive significance and consequences for primary consumers. Annu. Rev. Ecol. Syst. 1993, 24, 353–377. [Google Scholar] [CrossRef]
- Belguidoum, S. Urbanisation et urbanité au Sahara. In Méditerranée: Revue Géographique Des Pays Méditerranéens; Presses Universitaires de Provence: Aix-en-Provence, France, 2002; Volume 99, pp. 53–64. [Google Scholar]
- FAOSTAT, 2019. Données 2017. Available online: https://www.fao.org/countryprofiles/index/fr/?iso3=DZA (accessed on 10 December 2021).
- Faci, M.; Benziouche, S.E. Contribution to monitoring the influence of air temperature on some phenological stages of the date palm (cultivar ‘Deglet Nour’) in Biskra. J. Saudi Soc. Agric. Sci. 2021, 20, 248–256. [Google Scholar] [CrossRef]
- Matallah, M.E.; Alkama, D.; Ahriz, A.; Attia, S. Assessment of the Outdoor Thermal Comfort in Oases Settlements. Atmosphere 2020, 11, 185. [Google Scholar] [CrossRef] [Green Version]
- Boudjellal, L.; Bourbia, F. An evaluation of the cooling effect efficiency of the oasis structure in a Saharan town through remotely sensed data. Int. J. Environ. Stud. 2018, 75, 309–320. [Google Scholar] [CrossRef]
- Rchid, A. The effects of green spaces (Palme trees) on the microclimate in arides zones, case study: Ghardaia, Algeria. Energy Procedia 2012, 18, 10–20. [Google Scholar]
- Faci, M.; Benziouche, S.E. Relationship between Thermo-Hygrometric Variations and the Maturity of Dates in Biskra (Case of Deglet Nour); Tropicultura: Liège, Belgique, 2021. [Google Scholar]
- Weather Spark. 2022. Available online: https://weatherspark.com/ (accessed on 10 February 2022).
- Matallah, M.E.; Alkama, D.; Teller, J.; Ahriz, A.; Attia, S. Quantification of the Outdoor Thermal Comfort within Different Oases Urban Fabrics. Sustainability 2021, 13, 3051. [Google Scholar] [CrossRef]
- Benziouche, S.E. L’agriculture biologique, un outil de développement de la filière dattes dans la région des Ziban en Algérie. Cah. Agric. 2017, 26, 35008. [Google Scholar] [CrossRef] [Green Version]
- Zaid, A.; De Wet, P.F. Chapter I Botanical and Systematic Description of Date Palm. In FAO Plant Production and Protection Papers; Food and Agriculture Organization of the United Nations: Roma, Italy, 1999; pp. 1–28. [Google Scholar]
- Djerbi, M. Précis de Phoeniciculture; FAO: Rome, Italy, 1994; pp. 23–191. [Google Scholar]
- TESTO. TESTO 175 H1 Climate Measuring Instrument. Available online: https://static-int.testo.com/media/cf/01/1_8d8380280/testo-480-Instruction-manual.pdf (accessed on 16 December 2021).
- Labdaoui, K.; Mazouz, S.; Acidi, A.; Cools, M.; Moeinaddini, M.; Teller, J. Utilizing thermal comfort and walking facilities to propose a comfort walkability index (CWI) at the neighbourhood level. Build. Environ. 2021, 193, 107627. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef]
- Coccolo, S.; Kämpf, J.; Scartezzini, J.L.; Pearlmutter, D. Outdoor human comfort and thermal stress: A comprehensive review on models and standards. Urban Clim. 2016, 18, 33–57. [Google Scholar] [CrossRef]
- Givoni, B. Estimation of the Effects of Climate on Man: Development of a New Thermal Index, Report to Unesco Building; Research Statistics; Hebrew University: Jerusalem, Israel, 1997. [Google Scholar]
- Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal comfort. In Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Staiger, H.; Laschewski, G.; Grätz, A. The perceived temperature—A versatile index for the assessment of the human thermal environment. Part A: Scientific basics. Int. J. Biometeorol. 2012, 56, 165–176. [Google Scholar] [CrossRef]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Steadman, R.G. A universal scale of apparent temperature. J. Appl. Meteorol. Climatol. 1984, 23, 1674–1687. [Google Scholar] [CrossRef]
- Thom, E.C. A New Concept for Cooling Degree-Days; US Weather Bureau: Washington, DC, USA, 1957. [Google Scholar]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Moran, D.S.; Epstein, Y. Evaluation of the environmental stress index (ESI) for hot/dry and hot/wet climates. Ind. Health 2006, 44, 399–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregorczuk, M.; Cena, K. Distribution of effective temperature over the surface of the earth. Int. J. Biometeorol. 1967, 11, 145–149. [Google Scholar] [CrossRef]
- Belding, H.S.; Hatch, T.F. Index for evaluating heat stress in terms of resulting physiological strains. Heat. Pip. Air Cond. 1955, 27, 129–136. [Google Scholar]
- Emmanuel, R. Thermal comfort implications of urbanization in a warm-humid city: The Colombo Metropolitan Region (CMR), Sri Lanka. Build. Environ. 2005, 40, 1591–1601. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Designing Open Spaces in the Urban Environment: A Bioclimatic Approach; EESD, FP5; Centre for Renewable Energy Sources: Athens, Greece, 2004. [Google Scholar]
- Cheng, V.; Ng, E.; Chan, C.; Givoni, B. Outdoor thermal comfort study in a sub-tropical climate: A longitudinal study based in Hong Kong. Int. J. Biometeorol. 2012, 56, 43–56. [Google Scholar] [CrossRef]
- Lai, D.; Guo, D.; Hou, Y.; Lin, C.; Chen, Q. Studies of outdoor thermal comfort in northern China. Build. Environ. 2014, 77, 110–118. [Google Scholar] [CrossRef]
- Angouridakis, V.E.; Makrogiannis, T.J. The discomfort-index in Thessaloniki, Greece. Int. J. Biometeorol. 1982, 26, 53–59. [Google Scholar] [CrossRef]
- Tselepidaki, I.; Santamouris, M.; Moustris, C.; Poulopoulou, G. Analysis of the summer discomfort index in Athens, Greece, for cooling purposes. Energy Build. 1992, 18, 51–56. [Google Scholar] [CrossRef]
- Talukdar, M.S., Jr.; Hossen, M.S.; Baten, M.A. Trends of outdoor thermal discomfort in mymensingh: An application of Thoms’ discomfort index. J. Environ. Sci. Nat. Resour. 2017, 10, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Khajoo, M.; Seyed Mustafa, T.S.; Fahiminejad, A.; Morsal, B. Determining Comfort Climate of Garmsar City for Development of Sport Tourism Using Olgyay’s Method and Discomfort Index. Geography 2020, 10, 345–361. [Google Scholar]
- Potchter, O.; Ben-Shalom, H.I. Urban warming and global warming: Combined effect on thermal discomfort in the desert city of Beer Sheva, Israel. J. Arid. Environ. 2013, 98, 113–122. [Google Scholar] [CrossRef]
- Bady, M. Analysis of outdoor human thermal comfort within three major cities in Egypt. Open Access Libr. J. 2014, 1, e457. [Google Scholar] [CrossRef]
- Ghani, S.; Bialy, E.M.; Bakochristou, F.; Gamaledin SM, A.; Rashwan, M.M.; Hughes, B. Thermal comfort investigation of an outdoor air-conditioned area in a hot and arid environment. Sci. Technol. Built Environ. 2017, 23, 1113–1131. [Google Scholar] [CrossRef] [Green Version]
- Attia, S. Spatial and behavioral thermal adaptation in net zero energy buildings: An exploratory investigation. Sustainability 2020, 12, 7961. [Google Scholar] [CrossRef]
- Widera, B. Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-Saharan Africa. Renew. Sustain. Energy Rev. 2021, 140, 110736. [Google Scholar] [CrossRef]
- Madureira, H.; Andresen, T.; Monteiro, A. Green structure and planning evolution in Porto. Urban For. Urban Green. 2011, 10, 141–149. [Google Scholar] [CrossRef]
Climate Adaptation | Climatic and Cultivation Conditions |
---|---|
Favourable vegetation growth boundaries | 7 °C to 45 °C (dry temperature) |
20% to 70% (relative humidity) | |
Maximum temperature intensity of date palm | 38 °C |
Frost sensitivity | Palm tips: −6 °C |
All the palms: −9 °C | |
Tolerated drought duration | For several years, but with reduced growth and production |
Annual average water quantity | 15,000 m3/ha to 20,000 m3/ha |
Damaging rainfall | At the time of pollination and the end of ripening of date palm |
Estimated duration of the stages in weeks | Knotted fruit stage: 4–5 weeks |
Green date stage: 7–8 weeks | |
Rotating date stage: 3–5 weeks | |
Early ripening stage: 2–4 weeks | |
Mature date stage: 2–3 weeks |
Meteorological Data Parameters | |||||
---|---|---|---|---|---|
Variable | Device | Dimensions | Unit | Accuracy | Range |
Dry-bulb temperature (Td) | Testo 175 H1 0572 1754 | 149 × 53 × 27 mm | °C | ±0.4 °C | −20 to +55 °C |
Relative humidity (RH) | % | ±1.0% | 0 to 100% |
DI (°C) | Discomfort Conditions |
---|---|
DI < 21 | No discomfort |
21 ≤ DI < 24 | Less than 50% of people feel discomfort |
24 ≤ DI < 27 | More than 50% of people feel discomfort |
27 ≤ DI < 29 | Most people feel discomfort |
29 ≤ DI < 32 | Very strong discomfort |
DI ≥ 32 | Medical emergency |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matallah, M.E.; Arrar, H.F.; Faci, M.; Mahar, W.A.; Ben Ratmia, F.Z.; Attia, S. Assessment of Human Outdoor Thermal Comfort in a Palm Grove during the Date Palm Phenological Cycle. Atmosphere 2022, 13, 379. https://doi.org/10.3390/atmos13030379
Matallah ME, Arrar HF, Faci M, Mahar WA, Ben Ratmia FZ, Attia S. Assessment of Human Outdoor Thermal Comfort in a Palm Grove during the Date Palm Phenological Cycle. Atmosphere. 2022; 13(3):379. https://doi.org/10.3390/atmos13030379
Chicago/Turabian StyleMatallah, Mohamed Elhadi, Hicham Fawzi Arrar, Mohammed Faci, Waqas Ahmed Mahar, Fatima Zahra Ben Ratmia, and Shady Attia. 2022. "Assessment of Human Outdoor Thermal Comfort in a Palm Grove during the Date Palm Phenological Cycle" Atmosphere 13, no. 3: 379. https://doi.org/10.3390/atmos13030379
APA StyleMatallah, M. E., Arrar, H. F., Faci, M., Mahar, W. A., Ben Ratmia, F. Z., & Attia, S. (2022). Assessment of Human Outdoor Thermal Comfort in a Palm Grove during the Date Palm Phenological Cycle. Atmosphere, 13(3), 379. https://doi.org/10.3390/atmos13030379