Quick Predictions of Onset Times and Rain Amounts from Monsoon Showers over Urban Built Environments
Abstract
:1. Introduction
- A high-intensity precipitation event (1 December 2015) that caused catastrophic flooding over the southern Indian city is first described with a full meteorological discourse on the prevailing synoptic conditions (Figure 1).
- The observed synoptic conditions and the associated cloud morphology are compared with results from a full-scale numerical weather prediction model which includes a double-moment microphysical scheme. Having obtained crucial information from a valuable CFD model run, the next step would be to estimate cloud spectral properties from a chemical parcel model ideally suitable for computing the growth of mixed aerosols over urban environments, resulting in the growth of both the smallest collected drops and the larger collector drops.
- This is followed by a validation of the modelled cloud droplets with satellite-derived observations.
- Analytical formulations are then derived to predict the onset time of precipitation combining the processes of cloud auto-conversion and accretion. This is a significant improvement over the standard Ghosh and Jonas [21] results, where the radii of the collected droplets () were completely ignored in the swept volume estimates. It is shown that it is important to include these, and a much better agreement with observations is obtained when they are accounted for.
- Modelled onset times are then predicted analytically from the rate of decrease in cloud water amounts. The -folding time is a good indication of the expected onset time of precipitation of the event.
- Finally, for the time duration over which the precipitation intensity was maintained at 15 , the associated discharge rates over the low-lying regions around the Cooum River basin with an urban sprawl of ~4 housing over 1 million residents are estimated.
2. Materials and Methods
2.1. Case study Description
2.2. Large Eddy Simulation
2.3. Parcel Model Simulation
3. Results
3.1. Cloud Droplet Spectral Growth
3.2. Cloud Processes
3.2.1. Cloud Auto-conversion
3.2.2. Cloud Accretion
3.2.3. Derivation of Precipitation Onset Times Analytically with Cloud Droplet Auto-Conversion and Accretion
3.3. Rain Gauge Observations and Analytical Predictions of Rain Amounts
3.4. Modelling Drainage Flow over Inundated North Chennai Slums
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; et al. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Saini, I.; Chandramouli, P.; Samaddar, A.; Ghosh, S. Quantifying Tropical Cyclone Cloud Cover Using Envisat Retrievals—An Example of a Recent Severe Tropical Cyclone, ‘Thane’. Int. J. Remote Sens. 2013, 34, 4933–4950. [Google Scholar] [CrossRef]
- Ghosh, S.; Vidyasagaran, V.; Sandeep, S. Smart cyclone alerts over the Indian subcontinent. Atmos. Sci. Lett. 2013, 15, 157–158. [Google Scholar] [CrossRef]
- Ghosh, S.; Sharma, A.; Arora, S.; DeSouza, G. A geoengineering approach toward tackling tropical cyclones over the Bay of Bengal. Atmos. Sci. Lett. 2016, 17, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Kim, H.I.; Han, K.Y.; Hong, W.H. Flood Evacuation Routes Based on Spatiotemporal Inundation Risk Assessment. Water 2020, 12, 2271. [Google Scholar] [CrossRef]
- Devi, N.N.; Sridharan, B.; Bindhu, V.M.; Narasimhan, B.; Bhallamudi, S.M.; Bhatt, C.M.; Usha, T.; Vasan, D.T.; Kuiry, S.N. Investigation of Role of Retention Storage in Tanks (Small Water Bodies) on Future Urban Flooding: A Case Study of Chennai City, India. Water 2020, 12, 2875. [Google Scholar] [CrossRef]
- Pradhan, M.; Rao, A.S.; Srivastava, A.; Dakate, A.; Salunke, K.; Shameera, K.S. Prediction of Indian Summer-Monsoon Onset Variability: A Season in Advance. Sci. Rep. 2017, 7, 14229. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.W.; Feng, Y.; Chen, M.; Roberts, R.D. Nowcasting Challenges during the Beijing Olympics: Successes, Failures, and Implications for Future Nowcasting Systems. Weather Forecast. 2010, 25, 1691–1714. [Google Scholar] [CrossRef]
- Rap, A.; Ghosh, S.; Smith, M.H. Shepard and Hardy Multiquadric Interpolation Methods for Multicomponent Aerosol–Cloud Parameterization. J. Atmos. Sci. 2009, 66, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Phillips, J.C.; Perkins, R.J. Modelling the Flow in Droplet-Driven Sprays. In Advances in Turbulence 3; Johansson, A.V., Alfredsson, P.H., Eds.; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Vendrasco, E.P.; Machado, L.A.T.; Ribeiro, B.Z.; Freitas, E.D.; Ferreira, R.C.; Negri, R.G. Cloud-Resolving Model Applied to Nowcasting: An Evaluation of Radar Data Assimilation and Microphysics Parameterization. Weather Forecast. 2020, 35, 2345–2365. [Google Scholar] [CrossRef]
- Liu, S.C.; Fu, C.; Shiu, C.-J.; Chen, J.-P.; Wu, F. Temperature Dependence of Global Precipitation Extremes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.; Dudhia, J.; Gill, D.O.; Barker, D.; Wang, W.; Powers, J.P. A Description of the Advanced Research WRF Version 3; University Corporation for Atmospheric Research: Boulder, CO, USA, 2008; Volume 27, pp. 3–27. [Google Scholar]
- Kessler, E. On the Distribution and Continuity of Water Substance in Atmospheric Circulations; American Meteorological Society: Boston, MA, USA, 1969. [Google Scholar]
- Manton, M.J.; Cotton, W.R. Formulation of Approximate Equations for Modeling Moist Deep Convection on the Mesoscale; Atmospheric Science Paper 266; Colorado State University: Fort Collins, CO, USA, 1977; 62p. [Google Scholar]
- Tripoli, G.J.; Cotton, W.R. A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor. 1980, 19, 1037–1063. [Google Scholar] [CrossRef] [Green Version]
- Liou, K.N.; Ou, S.C. The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res. 1989, 94D, 8599–8607. [Google Scholar] [CrossRef]
- Baker, M.B. Variability in concentrations of cloud condensation nuclei in the marine cloud-topped boundary layer. Tellus B Chem. Phys. Meteorol. 1993, 45, 458–472. [Google Scholar] [CrossRef]
- Boucher, O.; Treut, H.L.; Baker, M.B. Precipitation and radiation modeling in a general circulation model: Introduction of cloud microphysical process. J. Geophys. Res. 1995, 100D, 6395–16414. [Google Scholar] [CrossRef]
- Noh, Y.; Oh, D.; Hoffmann, F.; Raasch, S. A Cloud Microphysics Parameterization for Shallow Cumulus Clouds Based on Lagrangian Cloud Model Simulations. J. Atmos. Sci. 2018, 75, 4031–4047. [Google Scholar] [CrossRef]
- Ghosh, S.; Jonas, P.R. On the application of the classic Kessler and Berry schemes in Large Eddy Simulation models with a particular emphasis on cloud autoconversion, the onset time of precipitation and droplet evaporation. Ann. Geophys. 1998, 16, 628–637. [Google Scholar] [CrossRef]
- Jayaraman, N. Why Is India’s Chennai flooded? BBC News. Available online: https://www.bbc.com/news/world-asia-india-34992004 (accessed on 19 February 2022).
- IMD (Indian Meteorological Department). Heavy Rainfall over Southeast India during November 2015: A Report. 2015. Available online: https://nwp.imd.gov.in/NWP-CHENNAI-RAINFALL-REPORT-2015.pdf (accessed on 19 February 2022).
- Biswas. Remembering 2015 Chennai Flood: How the City Suffered and Survived Heavy Rains 2 Years Back. In India Today. 2017. Available online: https://www.indiatoday.in/fyi/story/chennai-heavy-rains-news-2015-flood-december-1075731-2017-11-04 (accessed on 8 July 2021).
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Downey, P. A nonisothermal emissivity and absorptivity formulation for water vapor. J. Geophys. Res. Earth Surf. 1986, 91, 8649–8666. [Google Scholar] [CrossRef]
- Briegleb, B.P. Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res. Earth Surf. 1992, 97, 7603. [Google Scholar] [CrossRef]
- Bera, S.; Prabha, T.V. Parameterization of Entrainment Rate and Mass Flux in Continental Cumulus Clouds: Inference from Large Eddy Simulation. J. Geophys. Res. Atmos. 2019, 124, 13127–13139. [Google Scholar] [CrossRef]
- O’Dowd, C.D.; Lowe, J.A.; Smith, M.H. Coupling sea-salt and sulphate interactions and its impact on predicting cloud droplet concentrations. Geophys. Res. Lett. 1999, 26, 1311–1314. [Google Scholar] [CrossRef]
- Ghosh, S.; Smith, M.; Rap, A. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: Implications for climate studies. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2007, 365, 2659–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Gumber, S.; Varotsos, C. A Sensitivity Study of Diffusional Mass Transfer of Gases in Tropical Storm Hydrometeors. Theor. Appl. Climatol. 2018, 134, 1083–1100. [Google Scholar] [CrossRef]
- Gumber, S.; Ghosh, S.; Orr, A.; Sathish Kumar, C.R.; Pope, J. On the Microphysical Processing of Aged Combustion Aerosols Impacting Warm Rain Microphysics over Asian Megacities. Theor. Appl. Climatol. 2020, 139, 1479–1491. [Google Scholar] [CrossRef]
- Ghosh, S.; Osborne, S.; Smith, M.H. On the importance of cumulus penetration on the microphysical and optical properties of stratocumulus clouds. Atmos. Chem. Phys. 2005, 5, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Platnick, S.; Hubanks, P.; Meyer, K.; King, M.D. MODIS Atmosphere L3 Monthly Product (08_L3). NASA MODIS Adaptive Processing System, Goddard Space Flight Center. 2015. Available online: https://doi.org/10.5067/MODIS/MOD08_M3.006 (accessed on 19 February 2022).
- Grosvenor, D.P.; Sourdeval, O.; Zuidema, P.; Ackerman, A.; Alexandrov, M.D.; Bennartz, R.; Boers, R.; Cairns, B.; Chiu, J.C.; Christensen, M.; et al. Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives. Rev. Geophys. 2018, 56, 409–453. [Google Scholar] [CrossRef]
- Hoffmann, F.; Noh, Y.; Raasch, S. The Route to Raindrop Formation in a Shallow Cumulus Cloud Simulated by a Lagrangian Cloud Model. J. Atmos. Sci. 2017, 74, 2125–2142. [Google Scholar] [CrossRef]
- Safai, P.D.; Raju, M.P.; Maheshkumar, R.S.; Kulkarni, J.R.; Rao, P.S.P.; Devara, P.C.S. Vertical Profiles of Black Carbon Aerosols over the Urban Locations in South India. Sci. Total Environ. 2012, 431, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.R.S.; Gumber, S.; Gumber, S.; Mishra, R.; Jeyaseelan, T.; Yang, H. Carbonaceous Particle Scavenging and Thermal Comfort Augmentation with an Extended Green Facade Draped with Vernonia elaeagnifolia. EnvironmentAsia 2019, 12, 6274. [Google Scholar] [CrossRef]
- Prabha, T.V.; Patade, S.; Pandithurai, G.; Khain, A.; Axisa, D.; Pradeep-Kumar, P.; Maheshkumar, R.S.; Kulkarni, J.R.; Goswami, B.N. Spectral width of premonsoon and monsoon clouds over Indo-Gangetic valley. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Martin, G.M.; Johnson, D.W.; Spice, A. The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. J. Atmos. Sci. 1994, 51, 1823–1842. [Google Scholar] [CrossRef]
- Berry, E.X. Modification of the warm rain process. In Proceedings of the First Conference on Weather Modification; AMS: Albany, NY, USA, 1968; pp. 81–88. [Google Scholar]
- Ghosh, S.; Jonas, P.R. Some analytical calculations on the effect of turbulence on the settling and growth of cloud droplets. Geophys. Res. Lett. 2001, 28, 3883–3886. [Google Scholar] [CrossRef]
- Yin, J.; Wang, D.; Zhai, G. An attempt to improve Kessler-type parameterization of warm cloud microphysical conversion processes using CloudSat observations. J. Meteorol. Res. 2015, 29, 82–92. [Google Scholar] [CrossRef]
- Johnson, D. The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci. 1982, 39, 448–460. [Google Scholar] [CrossRef] [Green Version]
- Jonas, P. Turbulence and cloud microphysics. Atmos. Res. 1996, 40, 283–306. [Google Scholar] [CrossRef]
- Chen, S.; Yau, M.K.; Bartello, P. Turbulence Effects of Collision Efficiency and Broadening of Droplet Size Distribution in Cumulus Clouds. J. Atmos. Sci. 2018, 75, 203–217. [Google Scholar] [CrossRef]
- Chandramouli, C. Slums in Chennai: A Profile. In Proceedings of the Third International Conference on Environment and Health, Chennai, India, 15–17 December 2003; Bunch, M.J., Suresh, M.V., Kumaran, T.V., Eds.; Department of Geography, University of Madras and Faculty of Environmental Studies, York University: Chennai, India, 2003; pp. 82–88. [Google Scholar]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 Half Hourly 0.1 Degree × 0.1 Degree V06, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: 10.5067/GPM/IMERG/3B-HH/06 (accessed on 25 January 2022).
- Phadtare, J. Role of Eastern Ghats Orography and Cold Pool in an Extreme Rainfall Event over Chennai on 1 December 2015. Mon. Weather Rev. 2018, 146, 943–965. [Google Scholar] [CrossRef]
- Seenirajan, M.; Natarajan, M.; Thangaraj, R.; Bagyaraj, M. Study and Analysis of Chennai Flood 2015 Using GIS and Multicriteria Technique. J. Geogr. Inf. Syst. 2017, 09, 126–140. [Google Scholar] [CrossRef] [Green Version]
- Schicker, I.; Arnold, D.; Morton, D.; Seibert, P. Effects of updated land-use in WRF over mountainous terrain. Am. Geophys. Union 2011, 2011, A53B-0339. [Google Scholar]
- Easton, M. How Much of Your Area is Built on? BBC News. 2017. Available online: https://www.bbc.com/news/uk-41901294 (accessed on 25 January 2022).
- Hamdy, O.; Zhao, S.; Salheen, M.A.; Eid, Y.Y. Identifying the Risk Areas and Urban Growth by ArcGIS-Tools. Geosciences 2016, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Esri. GIS Mapping Software, Location Intelligence & Spatial Analytics. 2021. Available online: https://www.esri.com/en-us/home (accessed on 18 August 2021).
- Tropical Rainfall Measuring Mission (TRMM). TRMM (TMPA) Rainfall Estimate L3 3-Hour 0.25-Degree x 0.25-Degree V7; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2011. Available online: https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary (accessed on 14 July 2020).
- Subramanya, K. Engineering Hydrology, 5th ed.; McGraw-Hill: New Delhi, India, 2020. [Google Scholar]
- Konrad, C. Effects of Urban Development on Floods. In U.S. Geological Survey Fact Sheet 076-03. 2016. Available online: https://pubs.usgs.gov/fs/fs07603/ (accessed on 17 August 2021).
- Li, K.; Tian, F.; Khan, M.Y.A.; Xu, R.; He, Z.; Yang, L.; Lu, H.; Ma, Y. A High-Accuracy Rainfall Dataset by Merging Multiple Satellites and Dense Gauges over the Southern Tibetan Plateau for 2014–2019 Warm Seasons. Earth Syst. Sci. Data 2021, 13, 5455–5467. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zheng, Y.; Hashimshoni, E.; Pöhlker, M.L.; Jefferson, A.; Pöhlker, C.; Yu, X.; Zhu, Y.; Liu, G.; Yue, Z.; et al. Satellite Retrieval of Cloud Condensation Nuclei Concentrations by Using Clouds as CCN Chambers. PNAS 2016, 113, 5828–5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Cumulus Regime |
---|---|
Temperature | |
Pressure at cloud base | |
Updraft speed at cloud base | |
Relative humidity at cloud base | |
Parcel radius |
Time Instance | % Error | ||
---|---|---|---|
11:32:00 UTC | 2.70 | 3 | 10 |
11:55:00 UTC | 4.47 | 4.9 | 8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumber, S.; Ghosh, S. Quick Predictions of Onset Times and Rain Amounts from Monsoon Showers over Urban Built Environments. Atmosphere 2022, 13, 370. https://doi.org/10.3390/atmos13030370
Gumber S, Ghosh S. Quick Predictions of Onset Times and Rain Amounts from Monsoon Showers over Urban Built Environments. Atmosphere. 2022; 13(3):370. https://doi.org/10.3390/atmos13030370
Chicago/Turabian StyleGumber, Siddharth, and Satyajit Ghosh. 2022. "Quick Predictions of Onset Times and Rain Amounts from Monsoon Showers over Urban Built Environments" Atmosphere 13, no. 3: 370. https://doi.org/10.3390/atmos13030370
APA StyleGumber, S., & Ghosh, S. (2022). Quick Predictions of Onset Times and Rain Amounts from Monsoon Showers over Urban Built Environments. Atmosphere, 13(3), 370. https://doi.org/10.3390/atmos13030370