Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations, Heading Dates, and Yields of Cultivars
2.2. Climate Data
2.3. Data Processing
2.3.1. Trends of Yield and Climate Parameters
2.3.2. The Variation in Yields of ‘Otal’ and ‘Thual’ in Fairbanks and Delta Junction Explained by the Temperature and Precipitation of BH and AH
2.3.3. Cultivar Sensitivity to Climate Parameters at 10 days BH and AH
2.3.4. The Variation in Yield Explained by Climatic Parameters at 10 days BH and AH in Fairbanks and Delta Junction
2.3.5. Effect of High Temperature and Low Precipitation on the Yields of ‘Otal’ and ‘Thual’ in Fairbanks and Delta Junction
3. Results
3.1. Heading and Yield Changes of Cultivars ‘Otal’ and ‘Thual’ in Fairbanks from 1991 to 2018 and Delta Junction from 1992 to 2014
3.2. Temperature and Precipitation Trends during the Periods of 7–21 days BH and AH of ‘Otal’ and ‘Thual’ in Fairbanks and Delta Junction
3.3. Days of Drought at 7, 10, 14, and 21 Days BH and AH of Both Cultivars in Fairbanks and Delta Junction
3.4. Variation in Yields Explained by Combination of Climatic Parameters at BH and AH
3.5. Sensitivity of the Yields of ‘Otal’ and ‘Thual’ to Climatic Parameters at 10 Days BH and AH
3.6. Best Models for the Yields of ‘Otal’ and ‘Thual’ Explained by Combination of Climatic Parameters at 10 Days BH and AH or the Climatic Parameters of 10 Days BH or 10 Days AH Alone
3.7. Effect of Higher Temperature and Drought on the Yields of ‘Otal’ and ‘Thual’
4. Discussion
4.1. The Effect of Temperature and Precipitation Patterns Shift on the Yields of ‘Otal’ and ‘Thual’ in Fairbanks and Delta Junction
4.2. Implications for Barley Breeding and Cultivar Deployment in the Future
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, I.K.; Russell, J.; Powell, W.; Steffenson, B.; Thomas, W.T.B.; Waugh, R. Barley: A translational model for adaption to climate change. New Phytol. 2015, 206, 913–931. [Google Scholar] [CrossRef] [PubMed]
- Klink, K.; Wiersma, J.J.; Crawford, C.J.; Stuthman, D.D. Impacts of temperature and precipitation variability in the Northern Plains of the United States and Canada on the productivity of spring barley and oat. Int. J. Clim. 2014, 34, 2805–2818. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Schierhorn, F.; Hofmann, M.; Adrian, I.; Bobojonov, H.; Müller, D. Spatially varying impacts of climate change on wheat and barley yields in Kazakhstan. J. Arid. Environ. 2020, 178, 104164. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Rajala, A.A.; Jalli, M.; Kujala, M.; Laine, A. Different response to weather events may change the cultivation balance of spring barley and oats in the future. Field Crops Res. 2020, 259, 107965. [Google Scholar] [CrossRef]
- Hossain, A.; da Silva, J.A.T.; Lozovskaya, M.V.; Zvolinsky, V.P. High temperature combined with drought affect rainfed spring wheat and barley in South-Eastern Russia: I. phenology and growth. Saudi J. Bological Sci. 2012, 19, 473–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ajlouni, Z.; Al-Aballat, A.M.; Al-Ghzawi, A.L.A.; Ayad, J.Y.; Elenein, J.M.A.; Al-Quraan, N.A.; Baenziger, P.S. Impact of pre-anthesis water deficit on yield and yield components in barley (Hordeum vulgare L.) plants grown controlled conditions. Agronomy 2016, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Rajala, A.; Hakala, K.; Mäkelä, P.; Peltonen-Sainio, P. Drought effect on grain number and grain weight at spike and spikelet level in six-row spring barley. J. Agron. Crop Sci. 2011, 197, 103–112. [Google Scholar] [CrossRef]
- Reinhardt, D.; Jansen, G.; Seddig, S.; Eichler-Löbermann, B. Temperature stress during flowering time affects yield and quality parameters of waxy barley. Appl. Agric. For. Res. 2013, 63, 79–84. [Google Scholar]
- García, G.A.; Serrago, R.A.; Dreccer, M.F.; Miralles, D.J. Post-anthesis warm nights reduce grain weight in field-grown wheat and barley. Field Crops Res. 2016, 195, 50–59. [Google Scholar] [CrossRef]
- Hakala, K.; Jauhiainen, L.; Himanen, S.J.; Rötter, R.; Salo, T.; Kahiluoto, H. Sensitivity of barley varieties to weather in Finland. J. Agric. Sci. 2012, 150, 145–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alqudah, A.M.; Schnurbusch, T. Heading date is not flowering time in spring barley. Front. Plant Sci. 2017, 8, 896. [Google Scholar] [CrossRef] [Green Version]
- Cammarano, D.; Ronga, D.; Francia, E.; Akar, T.; Al-Yassin, A.; Benbelkacem, A.; Grando, S.; Romagosa, I.; Stanca, A.M.; Pecchioni, N. Genetic and Management Effects on Barley Yield and Phenology in the Mediterranean Basin. Front. Plant Sci. 2021, 12, 578. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.; Qabil, N.; Abdelsalam, A.; Wafa, H.A.; El Kenawy, A.; Casas, A.M.; Igartua, E. Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Res. 2018, 224, 67–75. [Google Scholar] [CrossRef]
- Inagaki, M.; Masuda, S. Heading responses to temperature and day-length in barley varieties. Jpn. J. Breed. 1984, 34, 423–430. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, M.; Van Veldhuizen, R.M.; Knight, C.W. Growing season and phenological stages of small grain crops in response to climate change in Alaska. Am. J. Clim. Chang. 2021, 10, 490–511. [Google Scholar] [CrossRef]
- Bieniek, P.A.; Walsh, J.E. Using climate divisions to analyze variation and trends in Alaska temperature and precipitation. J. Clim. 2014, 27, 2800–2818. [Google Scholar] [CrossRef]
- Hinzman, L.D.; Bettez, N.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.; Hope, A.; Huntington, H.P.; et al. Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim. Chang. 2005, 72, 251–298. [Google Scholar] [CrossRef]
- Shulski, M.; Wendler, G. The Climate of Alaska; University of Alaska Press: Fairbanks, AK, USA, 2007. [Google Scholar]
- Wendler, G.; Gordon, T.; Stuefer, M. On the Precipitation and Precipitation Change in Alaska. Atmosphere 2017, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Zadoks, J.; Chang, T.; Konzak, C. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Van Veldhuizen, R.M.; Zhang, M.; Knight, C.W. Performance of Agronomic Crop Cultivars in Alaska 1978–2012; Bulletin 116; Agricultural and Forestry Experiment Station, University of Alaska Fairbanks: Fairbanks, AK, USA, 2014; 252p. [Google Scholar]
- Sharratt, B.S.; Knight, C.W.; Wooding, F. Climatic impact on small grain production in the subarctic region of the United States. Arctic 2003, 56, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Peltonen-Sainio, P.; Venäläinen, A.; Mäkelä, H.M.; Pirinen, P.; Laapas, M.; Jauhiainen, L.; Kaseva, J.; Ojanen, H.; Korhonen, P.; Huusela-Veistola, E.; et al. Harmfulness of weather events and the adaptive capacity of farmer at high latitudes of Europe. Clim. Res. 2016, 67, 221–240. [Google Scholar] [CrossRef]
- Young, A.H.; Knapp, K.R.; Inamdar, A.; Hankins, W.; Rossow, W.B. The International Satellite Cloud Climatology Project H-Series climate data record product. Earth Syst. Sci. Data 2018, 10, 583–593. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 10 November 2021).
- Lobell, D.B.; Cahill, K.N.; Field, C.B. Historical effects of temperature and precipitation on California crop yield. Clim. Chang. 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Korner-Nievergelt, F.; Roth, T.; von Felten, S.; Guélat, J.; Almasi, B.; Korner-Nievergelt, P. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan; Elsevier Science: New York, NY, USA, 2015. [Google Scholar]
- Peltonen-Sainio, P.; Jauhiainen, L.; Trnka, M.; Olesen, J.E.; Calanca, P.; Eckersten, H.; Eitzinger, J.; Gobin, A.; Kersebaum, K.C.; Kozyra, J.; et al. Coincidence of variation in yield and climate in Europe. Agric. Ecosyst. Environ. 2010, 139, 483–489. [Google Scholar] [CrossRef]
- Högy, P.; Poll, C.; Marhan, S.; Kandeler, E.; Fangmeier, A. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley. Food Chem. 2013, 136, 1470–1477. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.M.; Schnurbusch, T. Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct. Plant Biol. 2014, 41, 424–436. [Google Scholar] [CrossRef] [Green Version]
- Kolář, P.; Trnka, M.; Brázdil, R.; Hlavinka, P. Influence of climatic factors on the low yields of spring barley and winter wheat in Southern Moravia (Czech Republic) during the 1961–2007 period. Theor. Appl. Climatol. 2014, 117, 707–721. [Google Scholar] [CrossRef]
- Borrego-Benjumea, A.; Carter, A.; Glenn, A.J.; Badea, A. Impact of excess moisture due to precipitation on barley grain yield in the Canadian Prairies. Can. J. Plant Sci. 2018, 99, 93–96. [Google Scholar] [CrossRef]
- Schelling, K.; Born, K.; Weissteiner, C.; Kühbauch, W. Relationships between yield and quality parameters of malting barley (Hordeum vulgare L.) and phenological and meteorological data. J. Agron. Crop Sci. 2003, 189, 113–122. [Google Scholar] [CrossRef]
- Borràs-Gelonch, G.; Slafer, G.A.; Casas, A.M.; van Eeuwijk, F.; Romagosa, I. Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Res. 2010, 119, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Mirosavljević, M.; Momčilović, V.; Denčić, S.; Mikić, S.; Trkulja, D.; Pržulj, N. 2018, Grain number and grain weight as determinants of triticale, wheat, two-rowed and six-rowed barley yield in the Pannonian environment. Span. J. Agric. Res. 2018, 16, e0903. [Google Scholar] [CrossRef] [Green Version]
- Dofing, S.M. Phenological development-yield relationships in spring barley in a subarctic environment. Can. J. Plant Sci. 1995, 75, 93–97. [Google Scholar] [CrossRef]
Climatic Parameters | Days | Trend (°C year−1 or cm year−1) | |||
---|---|---|---|---|---|
Location | |||||
Fairbanks | Delta Junction | ||||
Otal | Thual | Otal | Thual | ||
TmaxBH | 7 | 0.037 | 0.056 | −0.215 * | −0.142 |
10 | 0.0007 | 0.066 | −0.15 | −0.14 | |
14 | −0.07 | 0.04 | −0.09 | −0.09 | |
21 | −0.08 | −0.02 | −0.11 | −0.08 | |
TminBH | 7 | −0.014 | 0.068 | −0.015 | −0.004 |
10 | −0.02 | 0.059 | 0.026 | 0.01 | |
14 | −0.05 | 0.03 | 0.028 | 0.019 | |
21 | −0.03 | 0.008 | 0.03 | 0.012 | |
TdtrBH | 7 | 0.049 | −0.016 | −0.22 ** | −0.149 * |
10 | 0.02 | 0.008 | −0.18 ** | −0.16 ** | |
14 | −0.02 | 0.02 | −0.13 ** | −0.11 * | |
21 | −0.054 | −0.02 | −0.14 ** | −0.10 * | |
PBH | 7 | −0.05 * | −0.019 | 0.093 ** | 0.055 |
10 | −0.009 | −0.014 | 0.09 | 0.09 | |
14 | −0.022 | −0.036 | 0.13 | 0.087 | |
21 | 0.015 | 0.003 | 0.21 | 0.17 | |
TmaxAH | 7 | −0.015 | −0.004 | −0.017 | −0.007 |
10 | −0.005 | −0.026 | −0.017 | −0.036 | |
14 | −0.004 | −0.05 | −0.11 | −0.12 * | |
21 | 0.0001 | −0.014 | −0.086 | −0.10 | |
TminAH | 7 | 0.076 | 0.049 | 0.058 | 0.021 |
10 | 0.074 * | 0.05 | 0.068 | 0.032 | |
14 | 0.06 * | 0.03 | 0.03 | 0.012 | |
21 | 0.07 ** | 0.05 * | 0.013 | 0.014 | |
TdtrAH | 7 | −0.095 * | −0.058 | −0.078 | −0.032 |
10 | −0.078 * | −0.073 | −0.082 | −0.069 | |
14 | −0.07 * | −0.08 * | −0.12 ** | −0.12 ** | |
21 | −0.08 * | −0.07 | −0.1 ** | −0.11 * | |
PAH | 7 | 0.069 | 0.097 | −0.02 | −0.013 |
10 | 0.082 | 0.104 | −0.04 | −0.051 | |
14 | 0.11 * | 0.12 | −0.007 | −0.012 | |
21 | 0.10 | 0.11 | −0.08 | −0.04 |
Climate Variables | Days | Location | |||
---|---|---|---|---|---|
Fairbanks | Delta Junction | ||||
Otal | Thual | Otal | Thual | ||
PBH | 7 | 0.06 | 0.02 | −0.07 | −0.08 |
10 | 0.05 | 0.02 | −0.09 | −0.14 * | |
14 | 0.02 | 0.04 | −0.05 | −0.09 | |
21 | 0.01 | 0.04 | −0.12 | −0.06 | |
PAH | 7 | −0.05 | −0.06 | 0.01 | 0.002 |
10 | −0.07 | −0.06 | 0.015 | 0.006 | |
14 | −0.09 | −0.06 | −0.03 | −0.07 | |
21 | −0.04 | −0.02 | −0.05 | −0.02 |
Models | R2ajusted | |||||||
---|---|---|---|---|---|---|---|---|
Location | ||||||||
Fairbanks | Delta Junction | |||||||
Otal | Thual | Otal | Thual | |||||
Equation (1) | Equation (2) | Equation (1) | Equation (2) | Equation (1) | Equation (2) | Equation (1) | Equation (2) | |
Model7,7 § | 0.44 | 0.21 | 0.16 | 0.30 | −0.21 | −0.02 | −0.11 | 0.02 |
Model7,10 | 0.51 | 0.28 | 0.39 | 0.34 | −0.11 | 0.03 | −0.10 | −0.06 |
Model7,14 | 0.21 | 0.18 | 0.45 | 0.37 | 0.16 | 0.08 | −0.05 | −0.07 |
Model7,21 | 0.33 | 0.24 | 0.34 | 0.37 | −0.14 | −0.02 | −0.07 | −0.08 |
Model10,7 | 0.51 | 0.25 | −0.03 | 0.13 | −0.07 | 0.12 | −0.02 | 0.16 |
Model10,10 | 0.56 | 0.31 | 0.13 | 0.16 | −0.07 | 0.11 | 0.016 | 0.11 |
Model10,14 | 0.36 | 0.22 | 0.10 | 0.17 | 0.14 | 0.14 | 0.03 | 0.10 |
Model10,21 | 0.42 | 0.26 | 0.15 | 0.22 | 0.05 | 0.11 | 0.12 | 0.11 |
Model14,7 | 0.39 | 0.21 | 0.22 | 0.08 | −0.03 | 0.06 | 0.40 | 0.49 |
Model14,10 | 0.41 | 0.26 | 0.41 | 0.13 | −0.12 | 0.06 | 0.32 | 0.31 |
Model14,14 | 0.21 | 0.17 | 0.40 | 0.13 | 0.04 | 0.10 | 0.34 | 0.32 |
Model14,21 | 0.23 | 0.23 | 0.43 | 0.20 | −0.07 | 0.06 | 0.37 | 0.32 |
Model21,7 | 0.22 | 0.17 | 0.24 | 0.08 | 0.14 | 0.16 | 0.16 | 0.17 |
Model21,10 | 0.32 | 0.23 | 0.35 | 0.13 | −0.03 | 0.12 | 0.06 | −0.001 |
Model21,14 | 0.1 | 0.13 | 0.33 | 0.13 | 0.07 | 0.14 | 0.08 | −0.007 |
Model21,21 | 0.14 | 0.20 | 0.35 | 0.20 | 0.014 | 0.13 | 0.22 | −0.008 |
Fairbanks | Delta | |||||
---|---|---|---|---|---|---|
Climatic Factors | Equation (4) | Equation (5) | Equation (6) | Equation (4) | Equation (5) | Equation (6) |
Intercept | 5.8 × 10−17 | 4.7 × 10−17 | −0.13 | −0.018 | −0.09 | −1.3 × 10−18 |
(0.13) | (0.18) | (0.26) | (0.22) | |||
ΔX1 | −0.52 ** | −0.21 | −0.17 | |||
(0.14) | (0.18) | (0.38) | ||||
ΔX2 | 0.46 | 0.35 | ||||
(0.27) | (0.28) | |||||
ΔX3 | −0.74 ** | −0.07 | 0.32 | 0.44 * | ||
(0.22) | (0.35) | (0.36) | (0.20) | |||
ΔX1 × ΔX3 | −0.44 * | |||||
(0.19) | ||||||
ΔX2 × ΔX3 | 0.27 | |||||
(0.22) | ||||||
ΔX4 | 0.34 * | 0.26 | −0.37 | −0.14 | ||
(0.13) | (0.18) | (0.29) | (0.23) | |||
ΔX5 | −0.30 | −0.31 | 0.39 | 0.18 | ||
(0.15) | (0.18) | (0.28) | (0.24) | |||
ΔX6 | 0.93 *** | 0.41 * | −0.11 | −0.23 | ||
(0.22) | (0.18) | (0.29) | (0.23) | |||
ΔX4 × ΔX6 | −1.3 * | −0.86 | ||||
(0.44) | (0.30) | |||||
ΔX5 × ΔX6 | 0.42 | 0.39 | ||||
(0.31) | (0.26) | |||||
R2 | 0.66 | 0.34 | 0.35 | 0.59 | 0.46 | 0.20 |
R2ajusted | 0.57 | 0.25 | 0.23 | 0.28 | 0.29 | 0.16 |
Fairbanks | Delta | |||||
---|---|---|---|---|---|---|
Climatic Factors | Equation (4) | Equation (5) | Equation (6) | Equation (4) | Equation (5) | Equation (6) |
Intercept | −0.13 | −0.018 | −0.03 | −0.42 | −0.19 | −0.029 |
(0.16) | (0.15) | (0.15) | (0.27) | (0.23) | (0.20) | |
ΔX1 | 0.10 | |||||
(0.15) | ||||||
ΔX2 | 0.009 | −0.16 * | ||||
(0.12) | (0.07) | |||||
ΔX3 | 0.14 | 0.16 | 0.18 | |||
(0.10) | (0.16) | (0.09) | ||||
ΔX1 × ΔX3 | −0.05 | |||||
(0.04) | ||||||
ΔX2 × ΔX3 | −0.02 | |||||
(0.014) | ||||||
ΔX4 | −0.21 | |||||
(0.16) | ||||||
ΔX5 | −0.14 | −0.024 | −0.14 | |||
(0.08) | (0.19) | (0.18) | ||||
ΔX6 | 0.12 * | −0.05 | −0.06 | |||
(0.05) | (0.10) | (0.09) | ||||
ΔX4 × ΔX6 | −0.10 | −0.09 | ||||
(0.06) | (0.06) | |||||
R2 | 0.41 | 0.23 | 0.21 | 0.47 | 0.18 | 0.17 |
R2ajusted | 0.27 | 0.19 | 0.17 | 0.19 | 0.04 | 0.12 |
Fairbanks | Delta Junction | |||
---|---|---|---|---|
Otal | Thual | Otal | Thual | |
Intercept | 4113.4 *** | 3441.8 *** | 2229.3 *** | 2347.8 |
X1Y | −2009.0 | 1686.4 | −1197 | |
X3Y | −1987.7 * | −1267.9 * | −802.6 | 1580.7 |
X2GTA | 3583.5 * | −130.9 | −1143.8 * | |
X2LTA | −79.75 | −701.3 | −460.2 | |
X4Y | 641.3 | −3838.4 * | ||
X6Y | −792.6 | 395.8 | −295.4 | |
X5GTA | 455.5 | 896.6 | ||
X5LTA | −1607.5 * | −12.8 | ||
X1Y:X3Y | 4652.9 | 4372.9 * | ||
X3Y:X2GTA | −2799.8 | −2073.7 | ||
X3Y:X3LTA | −207.7 | −628.9 | ||
X4Y:X6Y | 5589.6 * | 3827.8 | ||
X6Y:X5GTA | −6174.4 * | −1231.2 | ||
X6Y:X5LTA | 112.3 | −2190.2 | ||
R2 | 0.68 | 0.72 | 0.40 | 0.48 |
R2ajusted | 0.38 | 0.45 | 0.18 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; Zhang, M.; Van Veldhuizen, R.M.; Knight, C.W. Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska. Atmosphere 2022, 13, 310. https://doi.org/10.3390/atmos13020310
Cheng M, Zhang M, Van Veldhuizen RM, Knight CW. Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska. Atmosphere. 2022; 13(2):310. https://doi.org/10.3390/atmos13020310
Chicago/Turabian StyleCheng, Mingyuan, Mingchu Zhang, Robert M. Van Veldhuizen, and Charles W. Knight. 2022. "Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska" Atmosphere 13, no. 2: 310. https://doi.org/10.3390/atmos13020310
APA StyleCheng, M., Zhang, M., Van Veldhuizen, R. M., & Knight, C. W. (2022). Impact of Heading Shift of Barley Cultivars on the Weather Patterns around Heading and Yield in Alaska. Atmosphere, 13(2), 310. https://doi.org/10.3390/atmos13020310